1
|
Yang S, Zhao T, Liu X, Zhang H, Yang B, Chen Z. Design and Development of Infiltration Resins: From Base Monomer Structure to Resin Properties. Chem Asian J 2024:e202401157. [PMID: 39477893 DOI: 10.1002/asia.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Indexed: 11/20/2024]
Abstract
The resin infiltration concept is one of the most widely used minimally invasive restorative techniques in restorative dentistry with the most outstanding therapeutic effect, and it is also one of the key research directions in restorative dentistry. "Infiltration resin" is the specialty restorative material for the technology, which is the key factor to success. The specialized restorative material is commonly known as "infiltrant/infiltration resins" "resins infiltrant" "infiltrant" or "resins," which will be consistently referred to as "infiltration resins" throughout the article. The paper aims to provide a comprehensive overview of infiltration resins by introducing the development of their therapeutic mechanisms, basic components, current challenges, and future trends, Based on existing literature, we analyze and compare how changes in the base monomer's structure and ratio affect the effectiveness of infiltration resins, from the material's structure-effective relationship. After compiling the information, the existing solution strategies have been listed to offer substantial support and guidance for future research endeavors.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of HighPerformance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun, 130012, China
| | - Ting Zhao
- Department of Geriatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Xiaoqiu Liu
- Department of Geriatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Haibo Zhang
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of HighPerformance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun, 130012, China
| | - Bo Yang
- Department of Thoracic Surgery the First Hospital of, Jilin University, 71 Xinmin Street, Chaoyang, Changchun, Jilin, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of HighPerformance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun, 130012, China
| |
Collapse
|
2
|
Sanz del Olmo N, Molina N, Fan Y, Namata F, Hutchinson DJ, Malkoch M. Antibacterial Hydrogel Adhesives Based on Bifunctional Telechelic Dendritic-Linear-Dendritic Block Copolymers. J Am Chem Soc 2024; 146:17240-17249. [PMID: 38865148 PMCID: PMC11212050 DOI: 10.1021/jacs.4c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.
Collapse
Affiliation(s)
- Natalia Sanz del Olmo
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Noemi Molina
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Yanmiao Fan
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Faridah Namata
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Daniel J. Hutchinson
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| |
Collapse
|
3
|
He X, Zhang S, Zhong Y, Huang X, Liu F, He J, Mai S. A low-shrinkage-stress and anti-bacterial adherent dental resin composite: physicochemical properties and biocompatibility. J Mater Chem B 2024; 12:814-827. [PMID: 38189164 DOI: 10.1039/d3tb01556d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Polymerisation shrinkage and biofilm accumulation are the two main problems associated with dental resin composites (DRCs) that induce secondary caries, which can cause restoration failure. Polymerisation shrinkage can lead to microleakage gaps between the tooth and the DRCs, causing the aggregation of bacteria and development of secondary caries. Reducing the shrinkage stress (SS) and improving the resistance to bacterial adhesion have always been the focus of this field in modifying DRCs. A thiol-ene resin system can effectively reduce the polymerisation SS via its step-growth mechanism for delaying the gel point. Fluorinated compounds can reduce the surface free energies, thereby reducing bacterial adhesion. Thus, in this study, a range of mass fractions (0, 10, 20, 30, and 40 wt%) of a fluorinated thiol-ene resin system were added to a fluorinated dimethacrylate resin system/tricyclo decanedimethanol diacrylate to create a fluorinated methacrylate-thiol-ene ternary resin matrix. DRCs were prepared using the obtained ternary resin matrix, and their physical and chemical properties, effect on bacterial adhesion, and biocompatibility were investigated. The results demonstrated that the volumetric shrinkage and SS of the DRCs were reduced with no reduction in conversion degree even after the thiol-ene resin system was added. All DRC-based fluorinated resin systems exhibited an excellent anti-bacterial adhesion effect, as evidenced by the colony-forming unit counts, live/dead bacterial staining, and crystal violet staining tests against Streptococcus mutans (S. mutans). The genetic expressions associated with the bacterial adhesion of S. mutans were substantially affected after being cultured with fluorinated DRCs. All fluorinated DRCs demonstrated good biocompatibility through the in vitro cytotoxicity test and live/dead staining images of the L-929 cells. The above results illustrate that the DRCs based on the fluorinated methacrylate-thiol-ene resin matrix can be potentially applied in clinical practice due to their low SS and anti-bacterial adhesion effect.
Collapse
Affiliation(s)
- Xinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Shengcan Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Xiangya Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| |
Collapse
|
4
|
Grob B, Simonis M, Liska R, Catel Y. Ethyl-2-(tosylmethyl)acrylate: A promising chain transfer agent for the development of low-shrinkage dental composites. Dent Mater 2023; 39:1013-1021. [PMID: 37734972 DOI: 10.1016/j.dental.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To evaluate the potential of ethyl-2-(tosylmethyl)acrylate (ASEE) as chain transfer agent for the development of low-shrinkage photopolymerizable dental composites. METHODS Composites containing 10, 20 and 30 mol% of ASEE in their organic matrix were formulated. Camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDAB) (0.33 wt%/0.60 wt%), CQ/EDAB/Ivocerin® (0.33 wt%/0.60 wt%/0.10, 0.25 or 0.50 wt%), CQ/EDAB/SpeedCure 938 (SC-938) (0.33 wt%/0.60 wt%/0.30, 0.50 or 1.00 wt%) and Ivocerin® (0.50 wt%) were used as photoinitiator systems. The glass transition temperature (Tg) and the crosslink density were determined by DMTA measurements. The flexural strength/modulus and ambient light working time were assessed according to ISO 4049. The shrinkage force was evaluated using a universal testing machine. The double bond conversion (DBC) was determined by NIR spectroscopy. DBC, flexural strength and modulus were measured after the storage of the specimens in deionized water at 37 °C for 24 h. The DBC, flexural strength and modulus data were analyzed by one-way ANOVA with p = 0.05 as significance level. RESULTS ASEE-based composites containing the classical initiator system CQ/EDAB exhibited low mechanical properties (flexural strength/modulus) and DBC. The screening of various photoinitiator systems showed that composites based on CQ/EDAB/Ivocerin® (0.33 wt%/0.60 wt%/0.50 wt%), Ivocerin® (0.50 wt%) or CQ/EDAB/SC-938 (0.33 wt%/0.60 wt%/1.00 wt%) were particularly attractive. Indeed, the use of these photoinitiator systems enabled the formulation of composites containing up to 30 mol% ASEE exhibiting excellent mechanical properties, high DBC, good network homogeneity and low shrinkage force values. Interestingly, the addition of SC-938 did not impair the ambient light working time of the uncured composites, whereas the incorporation of 0.50 wt% Ivocerin® resulted in a strong decrease of this value. SIGNIFICANCE The addition of the allyl sulfone ASEE in combination with the initiator system CQ/EDAB/SC-938 (0.33 wt%/ 0.60 wt%/ 1.00 wt%) is a promising strategy to develop low-shrinkage dental composites which exhibit excellent mechanical properties, low shrinkage force, high DBC and suitable ambient light working time.
Collapse
Affiliation(s)
- Benjamin Grob
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein
| | - Michael Simonis
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC, A-1060 Vienna, Austria
| | - Yohann Catel
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein.
| |
Collapse
|
5
|
Lin J, Fan Y, Hutchinson DJ, Malkoch M. Soft Hydroxyapatite Composites Based on Triazine-Trione Systems as Potential Biomedical Engineering Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7329-7339. [PMID: 36695708 PMCID: PMC9923673 DOI: 10.1021/acsami.2c16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Composites of triazine-trione (TATO) thiol-ene networks and hydroxyapatite (HA) have shown great potential as topological fixation materials for complex bone fractures due to their high flexural modulus, biocompatibility, and insusceptibility to forming soft-tissue adhesions. However, the rigid mechanical properties of these composites make them unsuitable for applications requiring softness. The scope of these materials could therefore be widened by the design of new TATO monomers that would lead to composites with a range of mechanical properties. In this work, four novel TATO-based monomers, decorated with either ester or amide linkages as well as alkene or alkyne end groups, have been proposed and synthesized via fluoride-promoted esterification (FPE) chemistry. The ester-modified monomers were then successfully formulated along with the thiol TATO monomer tris [2-(3-mercaptopropionyloxy)ethyl] isocyanurate (TEMPIC) and HA to give soft composites, following the established photo-initiated thiol-ene coupling (TEC) or thiol-yne coupling (TYC) chemistry methodologies. The most promising composite shows excellent softness, with a flexural modulus of 57 (2) MPa and εf at maximum σf of 11.8 (0.3)%, which are 117 and 10 times softer than the previously developed system containing the commercially available tri-allyl TATO monomer (TATATO). Meanwhile, the surgically convenient viscosity of the composite resins and their excellent cytotoxicity profile allow them to be used in the construction of soft objects in a variety of shapes through drop-casting suitable for biomedical applications.
Collapse
|
6
|
Evaluation of allyl sulfides bearing methacrylate groups as addition-fragmentation chain transfer agents for low shrinkage dental composites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Thiol-divinylbenzene: a thiol-ene system with high storage stability. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zhou ZX, Hu W, Zhao Z, Fu H. Photochemically Driven Polymeric Biocompatible and Antimicrobial Thiol-Acrylate Nanocomposite Suitable for Dental Restoration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46313-46323. [PMID: 36194167 DOI: 10.1021/acsami.2c13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development a photochemically driven polymeric composite for dental restorative materials to restore tooth cavities with antibacterial, biocompatibility, and outstanding mechanical properties is an urgent need for clinical application in stomatology. Herein, a series of polyurethane acrylate (PUA) prepolymers and antibacterial polyurethane acrylate quaternary ammonium salts (PUAQASs) were synthesized, and their mechanical and biological properties were explored. The unique secondary mercaptan with a long shelf life and low odor was used to reduce oxygen inhibition and increase cross-linking density; meanwhile, modified photocurable nano zirconia (nano ZrO2) enhances mechanical properties of the nanocomposites and possesses preeminent dispersion in the matrix. The results show that minimal inhibitory concentrations (MICs) of PUAQASs are 200 and 800 μg/mL for Staphylococcus aureus and Escherichia coli, respectively. The addition of secondary thiols significantly increases the photopolymerization rate and monomer conversion. The highest hardness and modulus reach 1.8 and 8.7 GPa compared to 1.8 and 8.3 GPa for commercial resin. The lap shear stress on the pig bone is 912 MPa, and that on commercial resin is 921 MPa. Most importantly, the photochemically driven polymeric composite has excellent biocompatibility and significantly better antimicrobial properties than commonly used commercial resins.
Collapse
Affiliation(s)
- Zhao-Xi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Zhuowei Zhao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| |
Collapse
|
9
|
Gouveia Z, Finer Y, Santerre JP. Towards the development of biostable dental resin systems - design criteria and constraints beyond ester-free chemistries. Dent Mater 2022; 38:1827-1840. [DOI: 10.1016/j.dental.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
|
10
|
Resin-based materials to control human dentin permeability under erosive conditions in vitro: A hydraulic conductance, confocal microscopy and FTIR study. Dent Mater 2022; 38:1669-1678. [PMID: 36089408 DOI: 10.1016/j.dental.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To characterize the behavior of three different polymeric agents before and after an erosive challenge on dentin permeability, to analyze their degradation in both conditions, and to analyze their degree of conversion (DC). METHODS The permeability of human dentin disks (1.0 ± 0.2 mm) was measured with smear layer, after its removal, after treatment (LpTreat) with Gluma Desensitizer, PRG Barrier Coat (PBC) or Icon infiltrant (n = 11/group) and after exposure to citric acid (LpEro) (6%, pH 2.1, 1 min). The specimens were analyzed under a Laser Scanning Confocal Microscope (n = 2/group) and the products' DC were calculated. Data were subjected to 2-way repeated measures ANOVA and post-hoc Bonferroni (permeability analysis), to paired t-test (for specimens treated with Icon) and to t-test (DC analysis) (α < 0.05). RESULTS Icon showed the lowest LpTreat and LpEro values, while PBC and Gluma did not differ from each other under these conditions. Icon and PBC showed LpEro similar to a dentin with smear layer. Under the Laser Scanning Confocal Microscope, more deposits were noticeable on dentin after treating with PBC. Gluma presented the deepest penetration in dentin. The DC of PBC was the highest. SIGNIFICANCE Icon caused the highest reduction on permeability values, followed by PBC and Gluma. PBC generated more deposits covering dentin and seemed to be more efficient after an erosive challenge. The association of a polymeric resin with inorganic ion-releasing fillers seem to be a great strategy to manage dentin hypersensitivity under erosive conditions.
Collapse
|
11
|
Wang X, Yamauchi S, Sun J. Improve Dentin Bonding Performance Using a Hydrolytically Stable, Ether-Based Primer. J Funct Biomater 2022; 13:128. [PMID: 36135563 PMCID: PMC9501844 DOI: 10.3390/jfb13030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to replace a traditional methacrylate-based primer (glycine, N-(2-hydroxy-3-(2-methyl-1-oxo-2-propenyl)propyl)-N-(4-methylphenyl) monosodium salt, NTG-GMA) with a hydrolytically stable ether-based primer (glycine, N-2-hydroxy-3-(4-vinylbenzyloxy)-propyl-N-(4-methylphenyl), monosodium salt, NTG-VBGE). The performance and durability of bonding composites to detin of two primers combined with methacrylate-based or ether-based adhesives were evaluated using shear bond strength (SBS) and micro-tensile bond strength (μTBS) combined with thermal cycling. The hydrolysis resistance of NTG-VBGE against hydrolysis was tested by challenging primed hydroxyapatite crystals with an esterase. The hydrophilicity of the primers and the resin spreading kinetics of adhesives on primed dentin were characterized by water contact angle measurements. The new primer NTG-VBGE was found to be compatible with both methacrylate-based adhesives and ether-based adhesives. The highest μTBS values were found in the test group of NTG-VBGE and ether-based adhesive, which was consistent with the resin spreading kinetics results. The more hydrophobic and hydrolytically stable primer/adhesive achieved improved dentin infiltration and bonding strength, suggesting significant potential for further developing dental restorative materials with extended service life.
Collapse
Affiliation(s)
- Xiaohong Wang
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
| | - Shinobu Yamauchi
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
- Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
| | - Jirun Sun
- The Forsyth Institute, Cambridge, MA 02142, USA;
- Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
12
|
Badria A, Hutchinson DJ, Sanz del Olmo N, Malkoch M. Acrylate‐free tough
3D
printable thiol‐ene thermosets and composites for biomedical applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adel Badria
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Daniel J. Hutchinson
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Natalia Sanz del Olmo
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
13
|
Pérez‐Mondragón AA, Trejo‐Carbajal N, Cuevas‐Suárez CE, Donado F, Herrera‐González AM. Effect of replacing UDMA by a new tetramethacrylate monomer on the properties of dental resin composite. J Appl Polym Sci 2022. [DOI: 10.1002/app.52707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alma Antonia Pérez‐Mondragón
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| | - Nayely Trejo‐Carbajal
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| | - Carlos E. Cuevas‐Suárez
- Laboratorio de Biomateriales Dentales, Área Académica de Odontología, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| | - Fernando Donado
- Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo‐AAMF Pachuca Mexico
| | - Ana M. Herrera‐González
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| |
Collapse
|
14
|
|
15
|
Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Kury M, Ehrmann K, Gorsche C, Dorfinger P, Koch T, Stampfl J, Liska R. Regulated acrylate networks as tough photocurable materials for additive manufacturing. POLYM INT 2022. [DOI: 10.1002/pi.6364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Kury
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| | - Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| | - Christian Gorsche
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| | - Peter Dorfinger
- Institute of Materials Science and Technology, Technische Universität Wien, Getreidemarkt 9/308 1060 Vienna Austria
| | - Thomas Koch
- Institute of Materials Science and Technology, Technische Universität Wien, Getreidemarkt 9/308 1060 Vienna Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology, Technische Universität Wien, Getreidemarkt 9/308 1060 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| |
Collapse
|
17
|
Bongiardina NJ, Soars SM, Podgorski M, Bowman CN. Radical-disulfide exchange in thiol–ene–disulfidation polymerizations. Polym Chem 2022. [DOI: 10.1039/d2py00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of radical-disulfide exchange on the polymerization and relaxation dynamics of thiol–ene–disulfide networks is investigated.
Collapse
Affiliation(s)
- Nicholas J. Bongiardina
- Material Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
| | - Shafer M. Soars
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Maciej Podgorski
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 5, Lublin 20-031, Poland
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Colorado 80309, USA
| | - Christopher N. Bowman
- Material Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V, Panpisut P. Physical/Mechanical and Antibacterial Properties of Orthodontic Adhesives Containing Calcium Phosphate and Nisin. J Funct Biomater 2021; 12:jfb12040073. [PMID: 34940552 PMCID: PMC8706961 DOI: 10.3390/jfb12040073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
Collapse
Affiliation(s)
- Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
19
|
Lamparth I, Wottawa D, Angermann J, Fässler P, Liska R, Catel Y. Synthesis of allyl sulfones bearing urethane groups as efficient addition-fragmentation chain transfer agents for the development of low-shrinkage composites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Wang X, Gao G, Song HB, Zhang X, Stansbury JW, Bowman CN. Evaluation of a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition polymer network with improved water stability and high mechanical performance as an ester-free dental restorative. Dent Mater 2021; 37:1592-1600. [PMID: 34456051 DOI: 10.1016/j.dental.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/14/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective is to develop and characterize an ester-free ether-based photo-CuAAC resin with high mechanical performance, low polymerization-induced stress compared with common BisGMA/TEGDMA (70/30) resins, and improved water stability in comparison to previously developed urethane-based photo-CuAAC resins. METHODS Triphenyl-ethane-centered ether-linked tri-azide monomers were synthesized and co-photopolymerized with ether-linked tri-alkyne monomers under visible light irradiation using a copper(II) pre-catalyst and CQ/EDAB as the initiator. The ether-based CuAAC formulation was investigated for thermo-mechanical properties, polymerization kinetics and shrinkage stress, and flexural properties with respect to a conventional BisGMA/TEGDMA (70/30) dental resin. In addition, both the ether-based CuAAC resin and the urethane-based CuAAC resin were examined for their water stability using the BisGMA/TEGDMA (70/30) resin as a control. RESULTS The ether-based CuAAC network (AK/AZ-1) exhibited a slightly lower glass-transition temperature compared with the BisGMA/TEGDMA network (108 °C vs 128 °C), but because of its much sharper glass transition, the AK/AZ-1 CuAAC-network maintained storage modulus higher than 1 GPa up to 100 °C. In addition, the ether-based AK/AZ-1 network exhibited reduced shrinkage stress (0.56 MPa vs 1.0 MPa) and much higher flexural toughness (7.6 MJ/m3vs 1.6 MJ/m3) while showing slightly lower flexural modulus and slightly higher flexural strength compared with the BisGMA/TEGDMA network. Moreover, the ether-based AK/AZ-1 CuAAC network displayed comparable water stability in comparison to the BisGMA/TEGDMA network with slightly higher water sorption (46 μg/mm3vs 38 μg/mm3) and much lower water solubility (2.3 μg/mm3vs 4.4 μg/mm3). SIGNIFICANCE Employing the ether-based hydrophobic CuAAC formulation significantly improved the water stability of the CuAAC network compared with previously developed urethane-based CuAAC networks. Furthermore, compared with the conventionally used BisGMA/TEGDMA formulation, the reduced shrinkage stress, comparable flexural strength/flexural modulus, and the superior flexural toughness of the ether-based CuAAC network make it a promising ester-free alternative to the currently widely-used methacrylate-based dental restoratives.
Collapse
Affiliation(s)
- Xiance Wang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Guangzhe Gao
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Han Byul Song
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Xinpeng Zhang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Jeffrey W Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States; Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States; Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| |
Collapse
|
21
|
Lu CH, Yu CH, Yeh YC. Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater 2021; 130:66-79. [PMID: 34098090 DOI: 10.1016/j.actbio.2021.05.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanocomposite (NC) hydrogels are promising biomaterials that possess versatile properties and functions for biomedical applications such as drug delivery, biosensor development, imaging and tissue engineering. Different strategies and chemistries have been utilized to define the structure and properties of NC hydrogels. In this review, we discuss NC hydrogels synthesized using dynamic bonds, including dynamic covalent bonds (e.g., Schiff base and boronate ester bond) and non-covalent bonds (e.g., hydrogen bonds and metal-ligand coordination). Dynamic bonds can reversibly break and reform to provide self-healing properties to NC hydrogels as well as be influenced by external factors to allow NC hydrogels with stimulus-responsiveness. The presence of dynamic bonds in NC hydrogels can occur at the polymer-polymer or polymer-particle interfaces, which also determines whether the particles act as fillers or crosslinkers in hydrogels. Several representative examples of NC hydrogels fabricated using dynamic bonds are discussed here, focusing on their design, preparation, properties, applications and future prospects. STATEMENT OF SIGNIFICANCE: This review provides an overview of the current progress in NC hydrogel development using dynamic bonds, summarizing the material design, fabrication approaches, unique performance and promising biomedical applications. The presence of both nanoparticles and dynamic bonds in hydrogels shows a combined or synergistic effect to provide hydrogels with dynamic features, definable properties, multi-functionality and stimulus-responsiveness for advanced applications. We believe that this review will be of interest to the hydrogel community and inspire researchers to develop next-generation hydrogels.
Collapse
|
22
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
Hatipoğlu Ö, Turumtay EA, Saygın AG, Hatipoğlu FP. Evaluation of Color Stability of Experimental Dental Composite Resins Prepared from Bis-EFMA, A Novel Monomer System. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ömer Hatipoğlu
- Department of Restorative Dentistry, Niğde Ömer Halisdemir University
| | | | | | | |
Collapse
|
24
|
Yu B, He J, Garoushi S, Vallittu PK, Lassila L. Enhancing Toughness and Reducing Volumetric Shrinkage for Bis-GMA/TEGDMA Resin Systems by Using Hyperbranched Thiol Oligomer HMDI-6SH. MATERIALS 2021; 14:ma14112817. [PMID: 34070484 PMCID: PMC8197550 DOI: 10.3390/ma14112817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022]
Abstract
In order to improve the toughness and reduce polymerization shrinkage of traditional bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based dental resin system, a hyperbranched thiol oligomer (HMDI-6SH) was synthesized via thiol-isocyanate click reaction using pentaerythritol tetra(3-mercaptopropionate (PETA) and dicyclohexylmethane 4,4′-diisocyanate (HMDI) as raw materials. Then HMDI-6SH was mixed with 1,3,5-Triallyl-1,3,5-Triazine-2,4,6(1H,3H,5H)-Trione (TTT) to prepare thiol-ene monomer systems, which were added into Bis-GMA/TEGDMA resins with different mass ratio from 10 wt% to 40 wt% to serve as anti-shrinking and toughening agent. The physicochemical properties of these thiol-ene-methacrylate ternary resins including functional groups conversion, volumetric shrinkage, flexural properties, water sorption, and water solubility were evaluated. The results showed that the incorporation of HMDI/TTT monomer systems into Bis-GMA/TEGDMA based resin could improve C=C double bond conversion from 62.1% to 82.8% and reduced volumetric shrinkage from 8.53% to 4.92%. When the mass fraction of HMDI/TTT monomer systems in the resins was no more than 20 wt%, the flexural strength of the resin was higher or comparable to Bis-GMA/TEGDMA based resins (p > 0.05). The toughness (it was measured from the stress–strain curves of three-point bending test) of the resins was improved. Water sorption and water solubility tests showed that the hydrophobicity of resin was enhanced with increasing the content of thioester moiety in resin.
Collapse
Affiliation(s)
- Biao Yu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (B.Y.); (J.H.); (S.G.); (P.K.V.)
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Jingwei He
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (B.Y.); (J.H.); (S.G.); (P.K.V.)
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510642, China
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (B.Y.); (J.H.); (S.G.); (P.K.V.)
| | - Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (B.Y.); (J.H.); (S.G.); (P.K.V.)
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (B.Y.); (J.H.); (S.G.); (P.K.V.)
- Correspondence:
| |
Collapse
|
25
|
Shah PK, Stansbury JW. Photopolymerization shrinkage-stress reduction in polymer-based dental restoratives by surface modification of fillers. Dent Mater 2021; 37:578-587. [PMID: 33573842 DOI: 10.1016/j.dental.2021.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This research explores the use of polymer brushes for surface treatment of fillers used in polymer-based dental restoratives with focus on shrinkage stress reduction. The influence of interfacial reactive groups on shrinkage stress is explored. METHODS Oligomers of varying lengths and with varying number of reactive groups along the length were synthesized by modifying commercial oligomers. Surface of silica fillers (OX50) was treated with methylaminopropyltrimethoxysilane and this was further reacted with the synthesized oligomers to obtain a series of polymer brushes on the surface. Fillers modified with γ-methacryloxypropyltrimethoxysilane were used as a control. Filler surface treatment was confirmed using diffuse reflectance spectroscopy and thermogravimetric analysis. Fillers were added at 30 wt % to a resin made of BisGMA/TEGDMA and polymerization kinetics, shrinkage stress, volumetric shrinkage, flexural strength and modulus, viscosity were measured. RESULTS Composites with polymer brush functionalized fillers showed up to a 30 % reduction in shrinkage stress as compared to the control, with no reduction in flexural strength and modulus. Shrinkage stress reduced with increasing length of the polymer brush and increased with increase in number of reactive groups along the length of the polymer brush. SIGNIFICANCE The interface between inorganic fillers and an organic polymer matrix has been utilized to reduce shrinkage stress in a composite with no compromise in mechanical properties. This study gives insights into the stress development mechanism at the interface.
Collapse
Affiliation(s)
- Parag K Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO, United States.
| | - Jeffrey W Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO, United States; Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
26
|
Long KF, Bongiardina NJ, Mayordomo P, Olin MJ, Ortega AD, Bowman CN. Effects of 1°, 2°, and 3° Thiols on Thiol–Ene Reactions: Polymerization Kinetics and Mechanical Behavior. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Aminoroaya A, Esmaeely Neisiany R, Nouri Khorasani S, Panahi P, Das O, Ramakrishna S. A Review of Dental Composites: Methods of Characterizations. ACS Biomater Sci Eng 2020; 6:3713-3744. [DOI: 10.1021/acsbiomaterials.0c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alireza Aminoroaya
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parisa Panahi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Oisik Das
- Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå 97187, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
28
|
Bienek DR, Giuseppetti AA, Okeke UC, Frukhtbeyn SA, Dupree PJ, Khajotia SS, Esteban Florez FL, Hiers RD, Skrtic D. Antimicrobial, biocompatibility, and physicochemical properties of novel adhesive methacrylate dental monomers. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520911660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the advancement of Class V restoratives, our goal was to evaluate the physicochemical and mechanical properties, antimicrobial functionality, and cytotoxic potential of novel antimicrobial copolymers. 5-Carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylpentan-1-aminium bromide (AMadh1) and 10-carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyldecan-1-aminium bromide (AMadh2) were incorporated into light-curable urethane dimethacrylate, polyethylene glycol–extended urethane dimethacrylate, ethyl 2-(hydroxymethyl) acrylate resin (UPE resin). In the AMadhs-UPE resin, the hydrophobic/hydrophilic balance, degree of vinyl conversion, flexural strength, elastic modulus, and shear bond strength were assessed. Antimicrobial properties were measured using Streptococcus mutans (planktonic and biofilm). Cytotoxicity was tested using human gingival fibroblasts and mouse connective tissue fibroblasts (ATCC® CCL-1™) exposed to two-fold serial dilutions (≤10.6 mmol/L AMadh1 or ≤8.8 mmol/L AMadh2). At 10% mass of AMadh, the attained degree of vinyl conversion values (AMadh1 = 90.1% and AMadh2 = 88.5%) were not statistically different from the UPE resin (88.1%). At both AMadh levels, the flexural strength was reduced in a dose-dependent manner. Elastic modulus and contact angle were not significantly affected by AMadh1. Variations in elastic modulus and contact angle were observed with AMadh2; however, this does not disqualify it in future design of Class V restoratives. Compared to UPE resin, AMadh1-UPE and AMadh2-UPE (10% mass) copolymers reduced S. mutans biofilm 4.2- and 1.6-fold, respectively (p ≤ 0.006). In direct contact with human gingival fibroblasts or ATCC CCL-1 cells, at biologically relevant concentrations, the AMadhs did not adversely affect cell viability or their metabolic activity. This effort addresses a significant oral health issue associated with elderly populations. Its successful completion is expected to yield dental restoratives with well-controlled biofunction.
Collapse
Affiliation(s)
- Diane R Bienek
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| | - Anthony A Giuseppetti
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| | - Ugochukwu C Okeke
- Agricultural Research Service, US Department of Agriculture, Washington, DC, USA
| | - Stanislav A Frukhtbeyn
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| | - Peter J Dupree
- School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sharukh S Khajotia
- College of Dentistry, The University of Oklahoma, Oklahoma City, OK, USA
| | | | - Rochelle D Hiers
- College of Dentistry, The University of Oklahoma, Oklahoma City, OK, USA
| | - Drago Skrtic
- Innovative & Technology Research, ADA Science & Research Institute, LLC, Frederick, MD, USA
| |
Collapse
|
29
|
Li Z, Zhang H, Xiong G, Zhang J, Guo R, Li L, Zhou H, Chen G, Zhou Z, Li Q. A low-shrinkage dental composite with epoxy-polyhedral oligomeric silsesquioxane. J Mech Behav Biomed Mater 2020; 103:103515. [DOI: 10.1016/j.jmbbm.2019.103515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
|
30
|
Sinha J, Dobson A, Bankhar O, Podgórski M, Shah PK, Zajdowicz SLW, Alotaibi A, Stansbury JW, Bowman CN. Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization. Dent Mater 2020; 36:249-256. [PMID: 31791733 PMCID: PMC7012731 DOI: 10.1016/j.dental.2019.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess the performance of thiol Michael photocurable composites based on ester-free thiols and vinyl sulfonamides of varying monomer structures and varied filler loadings and to contrast the properties of the prototype composites with conventional BisGMA-TEGDMA methacrylate composite. METHODS Synthetic divinyl sulfonamides and ester-free tetrafunctional thiol monomers were utilized for thiol-Michael composite development with the incorporation of thiolated microfiller. Polymerization kinetics was investigated using FTIR spectroscopy. Resin viscosities were assessed with rheometry. Water uptake properties were assessed according to standardized methods. Thermomechanical properties were analyzed by dynamic mechanical analysis. Flexural modulus/strength and flexural toughness were measured on a universal testing machine in three-point bending testing mode. RESULTS The vinyl sulfonamide-based thiol-Michael resin formulation demonstrated a wide range of viscosities with a significant increase in the functional group conversion when compared to the BisGMA-TEGDMA system. The two different types of vinyl sulfonamide under investigation demonstrated significant differences towards the water sorption. Tertiary vinyl sulfonamide did not undergo visible swelling whereas the secondary vinyl sulfonamide composite swelled extensively in water. With the introduction of rigid monomer into the polymer matrix the glass transition temperature increased and so increased the toughness. Glassy thiol-Michael composites were obtained by ambient curing. SIGNIFICANCE Employing the newly developed step-growth thiol-Michael resins in dental composites will provide structural uniformity, improved stability and lower water sorption.
Collapse
Affiliation(s)
- Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Osamah Bankhar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States; Department of Polymer Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana St. 33, Lublin 20-614, Poland
| | - Parag K Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Sheryl L W Zajdowicz
- Department of Biology, Metropolitan State University of Denver, PO Box 173362, Campus Box #53, Denver, CO 80217, United States
| | - Abdulaziz Alotaibi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Jeffrey W Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States; Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
31
|
Yamauchi S, Wang X, Egusa H, Sun J. High-Performance Dental Adhesives Containing an Ether-Based Monomer. J Dent Res 2019; 99:189-195. [PMID: 31861961 DOI: 10.1177/0022034519895269] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dental adhesives are vital for the success of dental restorations. The objective of this study is to make strong and durable dental adhesives that are free from 2 symbolic methacrylate-based dental resins-2-bis[4-(2-hydroxy-3-methacryl-oxypropoxy)-phenyl]-propane (Bis-GMA) and 2-hydroxyethyl-methacrylate (HEMA)-and have equivalent/improved bonding strength and durability. We formulated, prepared, and evaluated 2 dental adhesives using mixtures of a hydrolytically stable ether-based monomer, triethylene glycol divinylbenzyl ether (TEG-DVBE), with urethane dimethacrylate (UDMA) or pyromellitic glycerol dimethacrylate. These adhesives were composed of equimolar ester-/ether-based vinyl functional groups. They were compared with Bis-GMA/HEMA-based commercial and experimental dental adhesives in terms of shear bond strength and microtensile bond strength (µTBS) to human dentin and the µTBS bond stability under extended thermocycling challenges. In addition, the resins' infiltration to dentin tubules, mechanical performance, and chemical properties were assessed by scanning electron microscopy, ISO standard flexural strength and modulus measurements, contact angle measurements, and water sorption/solubility measurements. The hybrid TEG-DVBE-containing dental adhesives generated equivalent shear bond strength and µTBS in comparison with the controls. Significantly, these adhesives outperformed the controls after being challenged by 10,000 thermocycles between 5 °C and 55 °C. Water contact angle measurements suggested that the hybrid dental adhesives were relatively more hydrophobic than the Bis-GMA/HEMA controls. However, both TEG-DVBE-containing adhesives developed more and deeper resin tags in dentin tubules and formed thicker hybrid layers at the composite-dentin interface. Furthermore, the water solubility of UDMA/TEG-DVBE resins was reduced approximately 89% in comparison with the Bis-GMA/HEMA controls. The relatively hydrophobic adhesives that achieved equivalent/enhanced bonding performance suggest great potentials in developing dental restoration with extended service life. Furthermore, the TEG-DVBE-containing materials may find wider dental applications and broader utility in medical device development.
Collapse
Affiliation(s)
- S Yamauchi
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, USA.,Division of Molecular and Regenerative Prosthodontics, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Dental Biomaterials, School of Dentistry at Matsudo, Nihon University, Matsudo, Japan
| | - X Wang
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, USA
| | - H Egusa
- Division of Molecular and Regenerative Prosthodontics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - J Sun
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, USA
| |
Collapse
|
32
|
Sowan N, Dobson A, Podgorski M, Bowman CN. Dynamic covalent chemistry (DCC) in dental restorative materials: Implementation of a DCC-based adaptive interface (AI) at the resin-filler interface for improved performance. Dent Mater 2019; 36:53-59. [PMID: 31810600 DOI: 10.1016/j.dental.2019.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Dental restorative composites have been extensively studied with a goal to improve material performance. However, stress induced microcracks from polymerization shrinkage, thermal and other stresses along with the low fracture toughness of methacrylate-based composites remain significant problems. Herein, the study focuses on applying a dynamic covalent chemistry (DCC)-based adaptive interface to conventional BisGMA/TEGDMA (70:30) dental resins by coupling moieties capable of thiol-thioester (TTE) DCC to the resin-filler interface as a means to induce interfacial stress relaxation and promote interfacial healing. METHODS Silica nanoparticles (SNP) are functionalized with TTE-functionalized silanes to covalently bond the interface to the network while simultaneously facilitating relaxation of the filler-matrix interface via DCC. The functionalized particles were incorporated into the otherwise static conventional BisGMA/TEGDMA (70:30) dental resins. The role of interfacial bond exchange to enhance dental composite performance in response to shrinkage and other stresses, flexural modulus and toughness was investigated. Shrinkage stress was monitored with a tensometer coupled with FTIR spectroscopy. Flexural modulus/strength and flexural toughness were characterized in three-point bending on a universal testing machine. RESULTS A reduction of 30% in shrinkage stress was achieved when interfacial TTE bond exchange was activated while not only maintaining but also enhancing mechanical properties of the composite. These enhancements include a 60% increase in Young's modulus, 33% increase in flexural strength and 35% increase in the toughness, relative to composites unable to undergo DCC but otherwise identical in composition. Furthermore, by combining interfacial DCC with resin-based DCC, an 80% reduction of shrinkage-induced stress is observed in a thiol-ene system "equipped" with both types of DCC mechanisms relative to the composite without DCC in either the resin or at the resin-filler interface. SIGNIFICANCE This behavior highlights the advantages of utilizing the DCC at the resin-filler interface as a stress-relieving mechanism that is compatible with current and future developments in the field of dental restorative materials, nearly independent of the type of resin improvements and types that will be used, as it can dramatically enhance their mechanical performance by reducing both polymerization and mechanically applied stresses throughout the composite lifetime.
Collapse
Affiliation(s)
- Nancy Sowan
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA
| | - Maciej Podgorski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA; Department of Polymer Chemistry, Faculty of Chemistry, Maria Curia-Sklodowska University, Pl. Marii Curie-Sklodowskiej 5, 20-031 Lublin, Poland
| | - Christopher N Bowman
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA; Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
33
|
Fugolin AP, Dobson A, Ferracane JL, Pfeifer CS. Effect of residual solvent on performance of acrylamide-containing dental materials. Dent Mater 2019; 35:1378-1387. [PMID: 31378307 PMCID: PMC6750967 DOI: 10.1016/j.dental.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Methacrylamide-based monomers are being pursued as novel, hydrolytically stable materials for use in dental adhesives. The impact of residual solvents, due to the chemical synthesis procedures or the need for solvated adhesives systems, on the kinetics of polymerization and mechanical properties was the aim of the present investigation. METHODS Two base monomers (70wt% BisGMA or HEMAM-BDI - newly synthesized secondary methacrylamide) were combined with 30wt% N,N-dimethylacrylamide. Eethyl acetate (EtOAc), or 75vol% ethanol/25vol% water (EtOH/H2O) were added as solvents in concentrations of 2, 5, 15 and 20wt%. The resins were made polymerizable by the addition of 0.2wt% 2,2-dimethoxy-2-phenyl acetophenone (DMPA) and 0.4wt% diphenyliodonium hexafluorophosphate (DPI-PF6). Specimens (n=3) were photoactivated with a mercury arc lamp (Acticure 4000, 320-500nm, 250mW/cm2) for 5min. Degree of conversion (DC, %) was tracked in near-IR spectroscopy in real time and yield strength and modulus of elasticity were measured in three-point bending after dry and wet storage (n=6). The data was subject to one-way ANOVA/Tukey's Test (p≤0.05), or Student's t-test (p≤0.001). RESULTS In all groups for both BisGMA and HEMAM-BDI-based materials, DC and DC at Rpmax increased and maximum rate of polymerization decreased as solvent concentration increased. Despite the increased DC, BisGMA mixtures showed a decrease in FS starting at 5wt% EtOAc or 15wt% EtOH/H2O. Yield strength for the HEMAM-BDI groups was overall lower than that of the BisGMA groups, but the modulus of elasticity was significantly higher. SIGNIFICANCE The presence of residual solvent, from manufacturing or from practitioner's handling, affects polymerization kinetics and mechanical properties of resins. Methacrylates appear to be more strongly influenced than methacrylamides.
Collapse
Affiliation(s)
- Ana P Fugolin
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Dobson
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Carmem S Pfeifer
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
34
|
Donovan BR, Fowler HE, Matavulj VM, White TJ. Mechanotropic Elastomers. Angew Chem Int Ed Engl 2019; 58:13744-13748. [PMID: 31219675 DOI: 10.1002/anie.201905176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/01/2019] [Indexed: 11/12/2022]
Abstract
Liquid crystal elastomers (LCEs) are anisotropic polymeric materials. When subjected to an applied stress, liquid crystalline (LC) mesogens within the elastomeric polymer network (re)orient to the loading direction. The (re)orientation during deformation results in nonlinear stress-strain dependence (referred to as soft elasticity). Here, we uniquely explore mechanotropic phase transitions in elastomers with appreciable mesogenic content and compare these responses to LCEs in the polydomain orientation. The isotropic (amorphous) elastomers undergo significant directional orientation upon loading, evident in strong birefringence and x-ray diffraction. Functionally, the mechanotropic displacement of the elastomers to load is also nonlinear. However, unlike the analogous polydomain LCE compositions examined here, the isotropic elastomers rapidly recover after deformation. The mechanotropic orientation of the mesogens in these materials increase the toughness of these thiol-ene photopolymers by nearly 1300 % relative to a chemically similar elastomer prepared from wholly isotropic precursors.
Collapse
Affiliation(s)
- Brian R Donovan
- University of Colorado Boulder, Department of Chemical and Biological Engineering, 596 UCB, Boulder, CO, 80309, USA
| | - Hayden E Fowler
- University of Colorado Boulder, Department of Chemical and Biological Engineering, 596 UCB, Boulder, CO, 80309, USA
| | - Valentina M Matavulj
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH, 45433-7750, USA
| | - Timothy J White
- University of Colorado Boulder, Department of Chemical and Biological Engineering, 596 UCB, Boulder, CO, 80309, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH, 45433-7750, USA
| |
Collapse
|
35
|
Affiliation(s)
- Brian R. Donovan
- University of Colorado BoulderDepartment of Chemical and Biological Engineering, 596 UCB Boulder CO 80309 USA
| | - Hayden E. Fowler
- University of Colorado BoulderDepartment of Chemical and Biological Engineering, 596 UCB Boulder CO 80309 USA
| | - Valentina M. Matavulj
- Air Force Research LaboratoryMaterials and Manufacturing Directorate Wright Patterson Air Force Base Dayton OH 45433-7750 USA
| | - Timothy J. White
- University of Colorado BoulderDepartment of Chemical and Biological Engineering, 596 UCB Boulder CO 80309 USA
- Air Force Research LaboratoryMaterials and Manufacturing Directorate Wright Patterson Air Force Base Dayton OH 45433-7750 USA
| |
Collapse
|
36
|
Peer G, Eibel A, Gorsche C, Catel Y, Gescheidt G, Moszner N, Liska R. Ester-Activated Vinyl Ethers as Chain Transfer Agents in Radical Photopolymerization of Methacrylates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gernot Peer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Anna Eibel
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian Gorsche
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Yohann Catel
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
- Ivoclar Vivadent
AG, 9494 Schaan, Liechtenstein
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Norbert Moszner
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
- Ivoclar Vivadent
AG, 9494 Schaan, Liechtenstein
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
37
|
Chai H, Wang X, Sun J. Miniature specimens for fracture toughness evaluation of dental resin composites. Dent Mater 2019; 35:283-291. [DOI: 10.1016/j.dental.2018.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023]
|
38
|
Luo S, Liu F, Yu B, He J. Preparation of low shrinkage stress Bis-GMA free dental resin composites with a synthesized urethane dimethacrylate monomer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:137-149. [PMID: 30518312 DOI: 10.1080/09205063.2018.1556853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new urethane dimethacrylate TMA was synthesized through a typical urethane reaction. TMA was used to replace 1,6-bis(methacryloxy-2-ethoxycarbonyl- amino)-2,4,4- trimethylhexane (UDMA) in UDMA based composite partially or totally to prepare TMA containing composites. Critical properties of TMA containing composites were investigated. 2,2-bis[4(2-hydroxy-3-methacryloy- propyloy)phenyl]propane (Bis-GMA) based and UDMA based composites were used as references. FT-IR and 1H-NMR confirmed the structure of TMA. All of experimental dental resin composites had the similar double bond conversion (p > 0.05). With a certain amount of TMA, TMA containing composites could have lower volumetric shrinkage (p < 0.05) and shrinkage stress (p < 0.05) than control groups. Water sorption, solubility, flexural strength and modulus of TMA containing composites were not worse than those of control groups. All of TMA containing composites and UDMA based composite had the same fracture toughness (p > 0.05), which was higher than that of Bis-GMA based composite (p < 0.05). TMA has potential as Bis-GMA substitute to prepare Bis-GMA free dental resin composites with low shrinkage stress.
Collapse
Affiliation(s)
- Shuzhen Luo
- a College of Materials Science and Engineering, South China University of Technology , Guangzhou , China
| | - Fang Liu
- a College of Materials Science and Engineering, South China University of Technology , Guangzhou , China
| | - Biao Yu
- b Institution for Advanced Materials, Lingnan Normal University , Zhanjiang , China
| | - Jingwei He
- a College of Materials Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
39
|
Arseneault M, Granskog V, Khosravi S, Heckler IM, Mesa-Antunez P, Hult D, Zhang Y, Malkoch M. The Dawn of Thiol-Yne Triazine Triones Thermosets as a New Material Platform Suited for Hard Tissue Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804966. [PMID: 30387212 DOI: 10.1002/adma.201804966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.
Collapse
Affiliation(s)
- Mathieu Arseneault
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Viktor Granskog
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Sara Khosravi
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Ilona Maria Heckler
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Pablo Mesa-Antunez
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Daniel Hult
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Yuning Zhang
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| |
Collapse
|
40
|
Preparation and characterization of Bis-GMA-free dental composites with dimethacrylate monomer derived from 9,9-Bis[4-(2-hydroxyethoxy)phenyl]fluorene. Dent Mater 2018; 34:1003-1013. [DOI: 10.1016/j.dental.2018.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 01/22/2023]
|
41
|
Seidler K, Griesser M, Kury M, Harikrishna R, Dorfinger P, Koch T, Svirkova A, Marchetti-Deschmann M, Stampfl J, Moszner N, Gorsche C, Liska R. Vinyl Sulfonate Esters: Efficient Chain Transfer Agents for the 3D Printing of Tough Photopolymers without Retardation. Angew Chem Int Ed Engl 2018; 57:9165-9169. [DOI: 10.1002/anie.201803747] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Konstanze Seidler
- Institute of Applied Synthetic Chemistry; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Austria
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie Curie Pvt. Ottawa K1N6N5 Canada
| | - Markus Kury
- Institute of Applied Synthetic Chemistry; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Austria
| | - Reghunathan Harikrishna
- Institute of Applied Synthetic Chemistry; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Austria
| | - Peter Dorfinger
- Institute of Materials Science and Technology; Technische Universität Wien; Getreidemarkt 9/308 1060 Vienna Austria
| | - Thomas Koch
- Institute of Materials Science and Technology; Technische Universität Wien; Getreidemarkt 9/308 1060 Vienna Austria
| | - Anastasiya Svirkova
- Institute of Chemical Technology and Analytics; Technische Universität Wien; Getreidemarkt 9/164 1060 Vienna Austria
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technology and Analytics; Technische Universität Wien; Getreidemarkt 9/164 1060 Vienna Austria
| | - Juergen Stampfl
- Institute of Materials Science and Technology; Technische Universität Wien; Getreidemarkt 9/308 1060 Vienna Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Austria
| | - Norbert Moszner
- Ivoclar Vivadent AG; Bendererstrasse 2 9494 Schaan Liechtenstein
| | - Christian Gorsche
- Institute of Applied Synthetic Chemistry; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Austria
| |
Collapse
|
42
|
Faria-E-Silva AL, Dos Santos A, Tang A, Girotto EM, Pfeifer CS. Effect of thiourethane filler surface functionalization on stress, conversion and mechanical properties of restorative dental composites. Dent Mater 2018; 34:1351-1358. [PMID: 29934126 DOI: 10.1016/j.dental.2018.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/12/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study evaluated the efficacy of a thiourethane(TU)-modified silane agent in improving properties in filled composites. METHODS The TU-silane agent was synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene and 3-(triethoxysilyl)propyl isocyanate with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiol and alkoxy silane groups. Barium glass fillers (1μm average particle size) were functionalized with 5wt% TU-silane in an acidic ethanol solution. Commercially available 3-(trimethoxysilyl)propyl methacrylate (MA-silane) and (3-mercaptopropyl)trimethoxysilane (SH-silane), as well as no silane treatment (NO-silane), were used as controls. Composites were made with BisGMA-UDMA-TEGDMA (5:3:2), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8wt%) and di-tert-butyl hydroxytoluene (0.3wt%) and 70wt% silanated inorganic fillers. Polymerization stress (PS) was measured using a cantilever beam apparatus (Bioman). Methacrylate conversion (DC) and rate of polymerization (RP) during photoactivation (800mW/cm2) were followed in real-time with near-IR. Flexural strength/modulus (FS/FM) were evaluated in three-point bending with 2×2×25 mm. STATISTICAL ANALYSIS 2-way ANOVA/Tukey's test (α=5%). RESULTS DC, Rpmax and E were similar for all groups tested. FS was similar for the TU- and MA-silane, which were statistically higher than the untreated and SH-silane groups. Stress reductions in relation to the MA-silane were observed for all groups, but statistically more markedly for the TU-silane material. This is likely due to stress relaxation and/or toughening provided at the filler interface by the oligomeric TU structure. SIGNIFICANCE TU-silane oligomers favorably modified conventional dimethacrylate networks with minimal disruption to existing curing chemistry, in filled composites. For the same conversion values, stress reductions of up to 50% were observed, without compromise to mechanical properties or handling characteristics.
Collapse
Affiliation(s)
- André L Faria-E-Silva
- Department of Dentistry, Federal University of Sergipe, Rua Claudio Batista s/n, Bairro Sanatório, Aracaju, SE, 49060-100, Brazil.
| | - Andressa Dos Santos
- Graduate Program in Chemistry, State University of Maringa, Av. Colombo 5790, Jardim Universitário, Maringá, PR, 87020-900, Brazil.
| | - Angela Tang
- Phillips Academy, 180 Main St., Andover, MA, USA.
| | - Emerson M Girotto
- Department of Chemistry, State University of Maringa, Av. Colombo 5790, Jardim Universitário, Maringá, PR, 87020-900, Brazil.
| | - Carmem S Pfeifer
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, 2730 SW Moody Ave, 97201, Portland, OR, USA.
| |
Collapse
|
43
|
Seidler K, Griesser M, Kury M, Harikrishna R, Dorfinger P, Koch T, Svirkova A, Marchetti-Deschmann M, Stampfl J, Moszner N, Gorsche C, Liska R. Vinylsulfonatester: Effiziente Kettenübertragungsreagenzien für verzögerungsfreien 3D-Druck schlagzäher Photopolymere. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Konstanze Seidler
- Institut für Angewandte Synthesechemie; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Österreich
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Österreich
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie Curie Pvt. Ottawa K1N6N5 Kanada
| | - Markus Kury
- Institut für Angewandte Synthesechemie; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Österreich
| | - Reghunathan Harikrishna
- Institut für Angewandte Synthesechemie; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Österreich
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Österreich
| | - Peter Dorfinger
- Institut für Werkstoffwissenschaft und Werkstofftechnologie; Technische Universität Wien; Getreidemarkt 9/308 1060 Vienna Österreich
| | - Thomas Koch
- Institut für Werkstoffwissenschaft und Werkstofftechnologie; Technische Universität Wien; Getreidemarkt 9/308 1060 Vienna Österreich
| | - Anastasiya Svirkova
- Institut für Chemische Technologien und Analytik; Technische Universität Wien; Getreidemarkt 9/164 1060 Vienna Österreich
| | - Martina Marchetti-Deschmann
- Institut für Chemische Technologien und Analytik; Technische Universität Wien; Getreidemarkt 9/164 1060 Vienna Österreich
| | - Juergen Stampfl
- Institut für Werkstoffwissenschaft und Werkstofftechnologie; Technische Universität Wien; Getreidemarkt 9/308 1060 Vienna Österreich
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Österreich
| | - Norbert Moszner
- Ivoclar Vivadent AG; Bendererstrasse 2 9494 Schaan Liechtenstein
| | - Christian Gorsche
- Institut für Angewandte Synthesechemie; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Österreich
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Österreich
| | - Robert Liska
- Institut für Angewandte Synthesechemie; Technische Universität Wien; Getreidemarkt 9/163-MC 1060 Vienna Österreich
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry; Getreidemarkt 9/163-MC 1060 Vienna Österreich
| |
Collapse
|
44
|
Granskog V, García‐Gallego S, von Kieseritzky J, Rosendahl J, Stenlund P, Zhang Y, Petronis S, Lyvén B, Arner M, Håkansson J, Malkoch M. High‐Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2018; 28. [DOI: 10.1002/adfm.201800372] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 01/04/2025]
Abstract
AbstractThe use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self‐etch primers. Validation of the adhesive strength is conducted on wet bone substrates and accomplished via fiber‐reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bond strength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K‐wires and match metal plates and screw implants.
Collapse
Affiliation(s)
- Viktor Granskog
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| | - Sandra García‐Gallego
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| | - Johanna von Kieseritzky
- Department of Clinical Science and Education and the Department of Hand Surgery Karolinska Institutet SE‐118 83 Stockholm Sweden
| | - Jennifer Rosendahl
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Patrik Stenlund
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Yuning Zhang
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| | - Sarunas Petronis
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Benny Lyvén
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Marianne Arner
- Department of Clinical Science and Education and the Department of Hand Surgery Karolinska Institutet SE‐118 83 Stockholm Sweden
| | - Joakim Håkansson
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| |
Collapse
|
45
|
Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of composition strategies. J Mech Behav Biomed Mater 2018; 82:268-281. [PMID: 29627738 DOI: 10.1016/j.jmbbm.2018.03.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
Abstract
PURPOSE A systematic review was conducted to determine whether there were composition strategies available to reduce and control polymerization shrinkage stress development in resin-based restorative dental materials. DATA SOURCES This report was reported in accordance with the PRISMA Statement. Two reviewers performed a literature search up to December 2016, without restriction of the year of publication, in seven databases: PubMed, Web of Science, Scopus, SciELO, LILACS, IBECS, and BBO. STUDY SELECTION Only laboratory studies that evaluated polymerization shrinkage stress by direct testing were included. Pilot studies, reviews and in vitro studies that evaluated polymerization shrinkage stress by indirect methods (e.g., microleakage or cuspal deflection measurements), finite elemental analysis, or theoretical and mathematical models were excluded. Of the 6113 eligible articles, 62 studies were included in the qualitative analysis, and the meta-analysis was performed with 58 studies. The composition strategy was subdivided according to the modified part of the material: filler phase, coupling agent, or resin matrix. A global comparison was performed with random-effects models (α = 0.05). The only subgroup that did not show a statistical difference between the alternative strategy and the control was 'the use of alternative photo-initiators' (p = 0.29). CONCLUSION Modification of the resin matrix made the largest contribution to minimizing stress development. The technology used for decreasing stress in the formulation of low-shrinkage and bulk-fill materials was shown to be a promising application for reducing and controlling stress development.
Collapse
|
46
|
Huang S, Podgórski M, Zhang X, Sinha J, Claudino M, Stansbury JW, Bowman CN. Dental Restorative Materials Based on Thiol-Michael Photopolymerization. J Dent Res 2018; 97:530-536. [PMID: 29439642 DOI: 10.1177/0022034518755718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Step-growth thiol-Michael photopolymerizable resins, constituting an alternative chemistry to the current methacrylate-based chain-growth polymerizations, were developed and evaluated for use as dental restorative materials. The beneficial features inherent to anion-mediated thiol-Michael polymerizations were explored, such as rapid photocuring, low stress generation, ester content tunability, and improved mechanical performance in a moist environment. An ester-free tetrafunctional thiol and a ultraviolet-sensitive photobase generator were implemented to facilitate thiol-Michael photopolymerization. Thiol-Michael resins of varied ester content were fabricated under suitable light activation. Polymerization kinetics and shrinkage stress were determined with Fourier-transform infrared spectroscopy coupled with tensometery measurements. Thermomechanical properties of new materials were evaluated by dynamic mechanical analysis and in 3-point bending stress-strain experiments. Photopolymerization kinetics, polymerization shrinkage stress, glass transition temperature, flexural modulus, flexural toughness, and water sorption/solubility were compared between different thiol-Michael systems and the BisGMA/TEGDMA control. Furthermore, the mechanical performance of 2 thiol-Michael composites and a control composite were compared before and after extensive conditioning in water. All photobase-catalyzed thiol-Michael polymerization matrices achieved >90% conversion with a dramatic reduction in shrinkage stress as compared with the unfilled dimethacrylate control. One prototype of ester-free thiol-Michael formulations had significantly better water uptake properties than the BisGMA/TEGDMA control system. Although exhibiting relatively lower Young's modulus and glass transition temperatures, highly uniform thiol-Michael materials achieved much higher toughness than the BisGMA/TEGDMA control. Moreover, low-ester thiol-Michael composite systems show stable mechanical performance even after extensive water treatment. Although further resin/curing methodology optimization is required, the photopolymerized thiol-Michael prototype resins can now be recognized as promising candidates for implementation in composite dental restorative materials.
Collapse
Affiliation(s)
- S Huang
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - M Podgórski
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,2 Department of Polymer Chemistry, Faculty of Chemistry, MCS University, Lublin, Poland
| | - X Zhang
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - J Sinha
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - M Claudino
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - J W Stansbury
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,3 Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - C N Bowman
- 1 Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
47
|
Wang X, Huyang G, Palagummi SV, Liu X, Skrtic D, Beauchamp C, Bowen R, Sun J. High performance dental resin composites with hydrolytically stable monomers. Dent Mater 2018; 34:228-237. [DOI: 10.1016/j.dental.2017.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
|
48
|
Catel Y, Fässler P, Fischer U, Gorsche C, Liska R, Schörpf S, Tauscher S, Moszner N. Synthesis and polymerization of vinylcyclopropanes bearing urethane groups for the development of low-shrinkage composites. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Andrén OCJ, Fernandes AP, Malkoch M. Heterogeneous Rupturing Dendrimers. J Am Chem Soc 2017; 139:17660-17666. [DOI: 10.1021/jacs.7b10377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oliver C. J. Andrén
- School
of Chemical Science and Engineering, Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Aristi P. Fernandes
- Division
of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles v. 2, SE-171
77 Stockholm, Sweden
| | - Michael Malkoch
- School
of Chemical Science and Engineering, Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
50
|
Florea NM, Damian CM, Ionescu C, Lungu A, Vasile E, Iovu H. Designing of polyhedral oligomeric silsesquioxane (POSS)-based dithiol/dimethacrylate nano-hybrids. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2242-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|