1
|
Tsuzuki FM, Logan MG, Lewis SH, Correr-Sobrinho L, Pfeifer CS. Stability of the Dentin-Bonded Interface Using Self-Etching Adhesive Containing Diacrylamide after Bacterial Challenge. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46005-46015. [PMID: 39178414 DOI: 10.1021/acsami.4c07960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Purpose/Aim: Acrylamides are hydrolytically stable at pH lower than 2, and were shown to preserve bonded interface integrity with two-step, total etch adhesives. The objective of this study was to leverage those two characteristics in self-etching primers containing the acidic monomer 10-MDP and test the microtensile bond strength before and after incubation with S. mutans incubation. Materials and Methods: Acidic primers (10 wt % 10-methacryloyloxydecyl dihydrogen phosphate─10-MDP; 45 wt % N,N-diethyl-1,3-bis(acrylamido)propane─DEBAAP, or 2-hydroxyethyl methacrylate─HEMA; 45 wt %, glycerol-dimethacrylate─GDMA) and adhesives (DEBAAP or HEMA/10-MDP/UDMA 45/10/45 wt %) were made polymerizable by the addition of 0.2 wt % camphorquinone, 0.8 wt % ethyl-4-dimethylaminobenzoate, 0.4 wt % diphenyliodonium hexafluorophosphate, and 0.1 wt % butylhydroxytoluene. Nonsolvated materials were characterized for flexural strength (FS), modulus (E), toughness, water sorption/solubility (WS/SL), contact angle, and vinyl conversion (DC). Viscosity was evaluated after adding 20 and 40 vol % ethanol to the primer and adhesive, respectively. The experimental materials or Clearfil SE Bond (CC─commercial control) were used to bond a commercial composite (Filtek Supreme) to the flat surface of human dentin. Microtensile bond strength (MTBS) was tested in 1 mm2 sticks for the 5 primer/bond combinations: CC (Clearfil Bond Primer and Bond), HH (HEMA/HEMA), DD (DEBAAP/DEBAAP), HD (HEMA/DEBAAP), and DH (DEBAAP/HEMA). Prior to testing, sticks were stored in water or biofilm-inducing culture medium with S. mutans for 1 week. Confocal images and FTIR-ATR evaluation evaluated the hybrid layer of the adhesives. Results were analyzed using Student's t-test (WS, SL, DC, contact angle, FS, E, toughness), one-way ANOVA/Tukey's test for viscosity, and two-way ANOVA/Tukey's test for MTBS (95%). Results: HEMA-based materials had lower contact angle (p = 0.004), higher WS (p < 0.001), and similar SL values compared to DEBAAP (p = 0.126). FS (p = 0.171) and E (p = 0.065) dry values were similar, but after one week of water storage, FS/E dropped more significantly for HEMA materials. Dry and wet toughness was greater for DEBAAP (p < 0.001), but it also had the greatest drop (46%). Clearfil bonds had the highest viscosity, followed by DEBAAP and HEMA, respectively (p = 0.002). For the primers, HEMA had the lowest viscosity (p = 0.003). As far as MTBS, all groups tested in water were statistically different when compared with HH (p < 0.001). After storage in biofilm, DH had the highest MTBS value, being statistically different from HH (p = 0.002), CC (p = 0.015), and DD (p = 0.027). Conclusions: The addition of a diacrylamide and its association with HEMA in self-etching adhesive systems provided greater bonding stability after bacterial challenge.
Collapse
Affiliation(s)
- Fernanda M Tsuzuki
- Biomaterial and Biomedical Sciences Division, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, Oregon 97201, United States
- Dental Materials, Piracicaba School of Dentistry, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - Matthew G Logan
- Biomaterial and Biomedical Sciences Division, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, Oregon 97201, United States
| | - Steven H Lewis
- Biomaterial and Biomedical Sciences Division, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, Oregon 97201, United States
| | - Lourenço Correr-Sobrinho
- Dental Materials, Piracicaba School of Dentistry, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - Carmem S Pfeifer
- Biomaterial and Biomedical Sciences Division, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, Oregon 97201, United States
- Dental Materials, Piracicaba School of Dentistry, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| |
Collapse
|
2
|
Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers (Basel) 2023; 15:polym15051148. [PMID: 36904388 PMCID: PMC10007623 DOI: 10.3390/polym15051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Light-activated polymerization is one of the most important and powerful strategies for fabrication of various types of advanced polymer materials. Because of many advantages, such as economy, efficiency, energy saving and being environmentally friendly, etc., photopolymerization is commonly used in different fields of science and technology. Generally, the initiation of polymerization reactions requires not only light energy but also the presence of a suitable photoinitiator (PI) in the photocurable composition. In recent years, dye-based photoinitiating systems have revolutionized and conquered the global market of innovative PIs. Since then, numerous photoinitiators for radical polymerization containing different organic dyes as light absorbers have been proposed. However, despite the large number of initiators designed, this topic is still relevant today. The interest towards dye-based photoinitiating systems continues to gain in importance, which is related to the need for new initiators capable of effectively initiating chain reactions under mild conditions. In this paper we present the most important information about photoinitiated radical polymerization. We describe the main directions for the application of this technique in various areas. Attention is mainly focused on the review of high-performance radical photoinitiators containing different sensitizers. Moreover, we present our latest achievements in the field of modern dye-based photoinitiating systems for the radical polymerization of acrylates.
Collapse
|
3
|
High-Performance Photoinitiating Systems for LED-Induced Photopolymerization. Polymers (Basel) 2023; 15:polym15020342. [PMID: 36679223 PMCID: PMC9860695 DOI: 10.3390/polym15020342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and cannot be optimally activated under visible LED irradiation. Although many photoinitiators have been designed for LED-induced free radical polymerization and cationic polymerization, there is still the issue of the mating between photoinitiators and LEDs. Therefore, the development of novel photoinitiators, which could be applied under LED irradiation, is significant. Many photoinitiating systems have been reported in the past decade. In this review, some recently developed photoinitiators used in LED-induced photopolymerization, mainly in the past 5 years, are summarized and categorized as Type Ⅰ photoinitiators, Type Ⅱ photoinitiators, and dye-based photoinitiating systems. In addition, their light absorption properties and photoinitiation efficiencies are discussed.
Collapse
|
4
|
Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers (Basel) 2022; 14:polym14101998. [PMID: 35631880 PMCID: PMC9145974 DOI: 10.3390/polym14101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
This work is devoted to the study of two copper complexes (Cu) bearing pyridine ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin samples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths are considered to be safe to produce polymer materials. The photoinitiation abilities of these organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine (e.g., N-phenylglycine—NPG). Interestingly, high final conversions and high polymerization rates were obtained for both compounds using two and three-component photoinitiating systems (Cu1 (or Cu2)/Iodonium salt (Iod) (0.1%/1% w/w) and Cu1 (or Cu2)/Iod/amine (0.1%/1%/1% w/w/w)). The new proposed copper complexes were also used for direct laser write experiments involving a laser diode at 405 nm, and for the photocomposite synthesis with glass fibers using a UV-conveyor at 395 nm. To explain the obtained polymerization results, different methods and characterization techniques were used: steady-state photolysis, real-time Fourier transform infrared spectroscopy (RT-FTIR), emission spectroscopy and cyclic voltammetry.
Collapse
|
5
|
Balcerak A, Kabatc J. Recent progress in the development of highly active dyeing photoinitiators based on 1,3-bis(p-substituted phenylamino)squaraines for radical polymerization of acrylates. Polym Chem 2022. [DOI: 10.1039/d1py01519b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photopolymerization is a very popular technique used in the production of various polymeric materials. The key role in the light induced polymerization processes plays a photoinitiator. One of the...
Collapse
|
6
|
Zeng B, Cai Z, Lalevée J, Yang Q, Lai H, Xiao P, Liu J, Xing F. Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells. Toxicol In Vitro 2021; 72:105103. [PMID: 33516932 DOI: 10.1016/j.tiv.2021.105103] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Photoinitiators (PIs) are widely used for photopolymerization in industrial area and recently paid close attention to in biomedical field. However, there are few reports on their toxicity to human health. Here we explored cytotoxicity and cytocompatibilty of seven commercial and industrial-used PIs for developing their potential clinical application. Phenylbis(acyl) phosphine oxides (BAPO), 2-Benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (369), 4,4'-Bis(diethylamino) benzophenone (EMK), Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), and 2-Isopropylthioxanthone (ITX) caused different extent cytotoxicities to four tissue types of cells at the concentrations of 1 to 50 μM under a non-irradiation condition, of which the BAPO cytotoxicity was the highest, whereas Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPOL) and Methyl benzoylformate (MBF) displayed the lowest cellular toxicity. The cell lines and primary cells appeared highly sensitive to BAPO toxicity, the primary lymphocytes relatively to photoinitiator 369 (369) and EMK toxicities, LO2 cells to EMK and TPO toxicities, the primary lymphocytes and HUVEC-12 cells to MBF toxicity, but only HEK293T cells not to 369 toxicity. Furthermore, these PIs led to increasing cytotoxicity to different extents after exposure to 455 nm blue light, which is consistent with non-irradiation tendency. All the cells presented low sensitivity to TPOL and MBF, of which TPOL-triggered polymer is dramatically superior in its cytocompatibility to MBF, and in its transparency to clinically exclusively-used camphorquinone (CQ). The novel findings indicate that BAPO is the most toxic among the seven PIs, but TPOL and MBF are the least toxic, directing their development and application. Combined their triggered polymer cytocompatibility and color with reported deep curing efficiency, TPOL is more promising to be applied especially to clinical practice.
Collapse
Affiliation(s)
- Boning Zeng
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Zhenlong Cai
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France
| | - Qizhi Yang
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Haiwang Lai
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Pu Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Jing Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China.
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Zivic N, Sadaba N, Almandoz N, Ruipérez F, Mecerreyes D, Sardon H. Thioxanthone-Based Photobase Generators for the Synthesis of Polyurethanes via the Photopolymerization of Polyols and Polyisocyanates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nicolas Zivic
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Naroa Sadaba
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Nora Almandoz
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Fernando Ruipérez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
8
|
Kirschner J, Paillard J, Graff B, Becht J, Klee JE, Lalevée J. 2‐Oxo‐2(
tert
‐butyldimethylsilyl)Acetic Acid (DKSi‐COOH) as a New Water‐Soluble Visible Light Type I Photoinitiator for Free Radical Polymerization. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julie Kirschner
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 F‐68100 Mulhouse France
- Université de Strasbourg France
| | - Julien Paillard
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 F‐68100 Mulhouse France
- Université de Strasbourg France
| | - Bernadette Graff
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 F‐68100 Mulhouse France
- Université de Strasbourg France
| | - Jean‐Michel Becht
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 F‐68100 Mulhouse France
- Université de Strasbourg France
| | | | - Jacques Lalevée
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 F‐68100 Mulhouse France
- Université de Strasbourg France
| |
Collapse
|
9
|
Surface morphology and property of UV-cured film containing photopolymerizable polysiloxane-based nanogels with initiating capability. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2019. [DOI: 10.1007/s40090-019-00193-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Cuevas-Suárez CE, Ramos TS, Rodrigues SB, Collares FM, Zanchi CH, Lund RG, da Silva AF, Piva E. Impact of shelf-life simulation on bonding performance of universal adhesive systems. Dent Mater 2019; 35:e204-e219. [PMID: 31227184 DOI: 10.1016/j.dental.2019.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To evaluate the micro-tensile bond strength to dentin (μTBS), the degree of conversion (DC) and nanoleakage expression (NL) of eight dental adhesives considering their expiry date (as-received, half-life and or end of shelf-life) after shelf-life simulation. METHODS Five universal adhesives (Single Bond Universal, SBU; Tetric Bond Universal, TBU; OneCoat Universal, OCU; OptiBond Universal, OBU; and Prime&Bond Elect, P&B), two two-step self-etch adhesives (Clearfil SE, CSE; and AdheSE, ASE) and one two-step etch-and-rinse adhesive (Adper Singlebond 2, ASB) were evaluated. Shelf-life was simulated by storing the materials in an acclimatization chamber for different periods of time. The μTBS was tested in accordance with ISO/TS 11,405. DC was evaluated by means of FTIR spectroscopy. NL was evaluated after ammoniacal silver challenge. The significance level of α=0.05 was used for all statistical analyses. RESULTS The μTBS to dentin of TBU, P&B, ASE, and ASB adhesive systems remained stable throughout the shelf-life periods evaluated, while for SBU, OCU, OBU, and CSE, decreased significantly after evaluation in the 'half-life' or 'end of shelf-life' condition (p<0.05). Except for P&B, ASE and OBU, the degree of conversion significantly decreased after the shelf-life simulation (p<0.05). OCU, ASE, and CSE showed significantly increased percentage of silver deposition within the adhesive layer (p<0.05). SIGNIFICANCE Storing conditions and progressively longer storage time affect the performance of universal adhesives systems.
Collapse
Affiliation(s)
- Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hgo, 42160 Mexico; Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas. Gonçalves Cháves 457, Pelotas, RS 96015-560, Brazil.
| | - Tatiana S Ramos
- Biomaterials Development and Control Center (CDC-Bio), Federal University of Pelotas, Gonçalves Cháves 457, Pelotas, RS 96015-560, Brazil.
| | - Stéfani Becker Rodrigues
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos 2492, Porto Alegre, RS 90035-004, Brazil.
| | - Fabricio Mezzomo Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos 2492, Porto Alegre, RS 90035-004, Brazil.
| | - Cesar Henrique Zanchi
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas. Gonçalves Cháves 457, Pelotas, RS 96015-560, Brazil.
| | - Rafael Guerra Lund
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas. Gonçalves Cháves 457, Pelotas, RS 96015-560, Brazil.
| | - Adriana Fernandes da Silva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas. Gonçalves Cháves 457, Pelotas, RS 96015-560, Brazil.
| | - Evandro Piva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas. Gonçalves Cháves 457, Pelotas, RS 96015-560, Brazil.
| |
Collapse
|
11
|
Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, Ferracane J, Breschi L. The role of polymerization in adhesive dentistry. Dent Mater 2019; 35:e1-e22. [DOI: 10.1016/j.dental.2018.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
12
|
Rodrigues SB, Petzhold CL, Gamba D, Leitune VCB, Collares FM. Acrylamides and methacrylamides as alternative monomers for dental adhesives. Dent Mater 2018; 34:1634-1644. [DOI: 10.1016/j.dental.2018.08.296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
13
|
Cytotoxic and genotoxic potential of the type I photoinitiators BAPO and TPO on human oral keratinocytes and V79 fibroblasts. Dent Mater 2018; 34:1783-1796. [PMID: 30340767 DOI: 10.1016/j.dental.2018.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Phenylbis(acyl) phosphine oxide (BAPO) and diphenyl(acyl) phosphine oxide (TPO) are alternative photoinitiators to camphorquinone (CQ) in dental resinous materials. Aim of this study was to investigate their cytotoxic/genotoxic potential in human oral keratinocytes (OKF6/Tert2) and Chinese hamster lung fibroblasts (V79) in comparison to CQ. METHODS Cells were exposed to different concentrations of BAPO and TPO (1-50μM). Cytotoxicity was evaluated using H33342 and MTT assay, cell proliferation by BrdU proliferation assay and microscopy. Effects on cellular redox homeostasis were assessed by detecting intracellular levels of reactive oxygen/nitrogen species (ROS/RNS) using the DCFH2 assay and by quantification of mRNA expression of oxidatively regulated, cyto-protective enzymes. Genotoxic potential was determined by use of micronucleus (MN) assay. RESULTS BAPO and TPO induced a concentration-dependent decrease of cell number. BAPO and TPO showed 50- to 250-fold higher cytotoxicity than CQ. In contrast to CQ, both photoinitiators revealed no increase of intracellular ROS/RNS. However, BAPO (10μM) at least significantly induced mRNA-expression of redox-regulated proteins after 24h similar to 2.5mM CQ. Additionally, BAPO significantly raised the number of micronuclei, but only in V79 cells (10μM: 12±1, 2.5mM CQ: 15±1, medium control: 6±3). However, it also significantly decreased proliferation of these cells (10μM BAPO: 19.8%±7.3% compared to controls). SIGNIFICANCE BAPO and TPO revealed concentration-dependent cytotoxic effects in human oral keratinocytes and V79 cells. However, in contrast to CQ, no generation of intracellular ROS/RNS was found. Only BAPO induced genotoxicity in V79 cells.
Collapse
|
14
|
Granskog V, García‐Gallego S, von Kieseritzky J, Rosendahl J, Stenlund P, Zhang Y, Petronis S, Lyvén B, Arner M, Håkansson J, Malkoch M. High‐Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2018; 28. [DOI: 10.1002/adfm.201800372] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 01/04/2025]
Abstract
AbstractThe use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self‐etch primers. Validation of the adhesive strength is conducted on wet bone substrates and accomplished via fiber‐reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bond strength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K‐wires and match metal plates and screw implants.
Collapse
Affiliation(s)
- Viktor Granskog
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| | - Sandra García‐Gallego
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| | - Johanna von Kieseritzky
- Department of Clinical Science and Education and the Department of Hand Surgery Karolinska Institutet SE‐118 83 Stockholm Sweden
| | - Jennifer Rosendahl
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Patrik Stenlund
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Yuning Zhang
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| | - Sarunas Petronis
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Benny Lyvén
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Marianne Arner
- Department of Clinical Science and Education and the Department of Hand Surgery Karolinska Institutet SE‐118 83 Stockholm Sweden
| | - Joakim Håkansson
- RISE Research Institutes of Sweden Bioscience and Materials–Medical Device Technology Box 857 Borås Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology Department of Fibre and Polymer Technology SE‐100 44 Stockholm Sweden
| |
Collapse
|
15
|
Chmela Š, Fiedlerová A, Liptaj T, Catel Y, Moszner N. Determination of homopolymerization kinetics and copolymerization with methyl methacrylate of diethyl 9-(methacryloyloxy)-2-oxo-nonylphosphonate, 9-(methacryloyloxy)-2-oxo-nonylphosphonic acid and diethyl 9-(methacryloyloxy)-nonylphosphonate. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe three polymerizable monomers diethyl 9-(methacryloyloxy)-2-oxo-nonylphosphonate M1, 9-(methacryloyloxy)-2-oxo-nonylphosphonic acid M2 and diethyl 9-(methacryloyloxy)-nonylphosphonate M3 are examined for their free radical polymerization and copolymerization activity in methanol between 40 and 65°C. Polymerization proceeds readily through a thermal free radical initiation. The intensity exponents for the monomer and initiator are only slightly over 1 and approximately 0.5, respectively. This is in accordance with the results typically observed for an ideal free radical polymerization with bimolecular termination. The kinetics of copolymerization with methyl methacrylate (MMA) are monitored by online 1H nuclear magnetic resonance (NMR) spectroscopy. Two copolymerization reactions for each pair of co-monomers are sufficient to evaluate the kinetic data using the Jaacks method, the Fineman-Ross method and the nonlinear least squares method. All three methods give similar results for particular monomer/MMA couples.
Collapse
Affiliation(s)
- Štefan Chmela
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic
| | - Agnesa Fiedlerová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic
| | - Tibor Liptaj
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Yohann Catel
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein
| | - Norbert Moszner
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein
| |
Collapse
|
16
|
Garra P, Dumur F, Nechab M, Morlet-Savary F, Dietlin C, Graff B, Gigmes D, Fouassier JP, Lalevée J. Stable copper acetylacetonate-based oxidizing agents in redox (NIR photoactivated) polymerization: an opportunity for the one pot grafting from approach and an example on a 3D printed object. Polym Chem 2018. [DOI: 10.1039/c8py00341f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stable Cu(ii) ox. agent for redox (graft) polymerization.
Collapse
Affiliation(s)
- Patxi Garra
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Frédéric Dumur
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Malek Nechab
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Fabrice Morlet-Savary
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Céline Dietlin
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Bernadette Graff
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Didier Gigmes
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Jean-Pierre Fouassier
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2 M
- UMR CNRS 7361
- UHA
- 68057 Mulhouse Cedex
- France
| |
Collapse
|
17
|
Ware HOT, Farsheed AC, Baker E, Ameer G, Sun C. Fabrication Speed Optimization for High-resolution 3D-printing of Bioresorbable Vascular Scaffolds. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|