1
|
Bezerra A, Gonçalves G, Alves LC, Stamfor T, De Brito O, Monteiro GQ. Bacterial Adhesion and In Situ Biodegradation of Preheated Resin Composite Used as a Luting Agent for Indirect Restorations. Oper Dent 2024; 49:725-737. [PMID: 39420222 DOI: 10.2341/23-132-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To evaluate surface roughness and bacterial adhesion after in situ biodegradation of the cementation interface of indirect restorations cemented with preheated resin composite. METHODS AND MATERIALS Resin composite blocks (Z250XT/3M ESPE) were cemented to bovine enamel (7 × 2.5 × 2 mm) using preheated microhybrid resin composites: (1) Filtek Z100 (3M ESPE) (Z100); (2) Gradia Direct X (GC America) (GDX); and (3) Light-cured resin cement RelyX Veneer (3M ESPE) (RXV) (n=21). The resin composites were preheated on a heating device (HotSet, Technolife) at 69°C for 30 minutes. Disk-shaped specimens (7 × 1.5 mm) were made for biodegradation analysis with the luting agents (n=25). The in situ phase consisted of 20 volunteers' using an intraoral palatal device for 7 days. Each device had six cylindrical wells for the blocks and the disk-shaped specimens. Biodegradation was evaluated through surface roughness (Ra), scanning electron microscopy (SEM) micromorphological analysis, and colony-forming unit (CFU) count. The film thickness of the luting agents was also measured under stereomicroscopy. RESULTS Increased surface roughness was observed after the cariogenic challenge without differences between the luting agents. Higher variation and surface flaws suggestive of particulate detachment were observed for Z100. No differences were observed in CFU counts. CONCLUSIONS All materials underwent surface biodegradation, and the surface roughness of the resin cements was similar to or lower than that of the preheated resin composites. The resin composites' film thickness was thicker than that of the resin cement. Clinicians should be aware of these factors when choosing the use of preheated resin composite since it can lead to reduced longevity of the cementation interface and, therefore, restorations.
Collapse
Affiliation(s)
- Alca Bezerra
- Ana Luisa Cassiano Alves Bezerra, MSc, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Gga Gonçalves
- Gabriel Gazzoni Araújo Gonçalves, PhD, Keizo Asami Institute/ Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - L C Alves
- Luiz Carlos Alves, Keizo Asami and Aggeu Magalhães Institute/-Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Tcm Stamfor
- TThayza Christina Montenegro Stamford, PhD, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Off De Brito
- Oscar Felipe Fonseca De Brito, PhD, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - GQdeM Monteiro
- *Gabriela Queiroz de Melo Monteiro, PhD, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Tzimas K, Antoniadou M, Varzakas T, Voidarou C(C. Plant-Derived Compounds: A Promising Tool for Dental Caries Prevention. Curr Issues Mol Biol 2024; 46:5257-5290. [PMID: 38920987 PMCID: PMC11201632 DOI: 10.3390/cimb46060315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
There is a growing shift from the use of conventional pharmaceutical oral care products to the use of herbal extracts and traditional remedies in dental caries prevention. This is attributed to the potential environmental and health implications of contemporary oral products. This comprehensive review aims at the analysis of plant-derived compounds as preventive modalities in dental caries research. It focuses on data collected from 2019 until recently, trying to emphasize current trends in this topic. The research findings suggest that several plant-derived compounds, either aqueous or ethanolic, exhibit notable antibacterial effects against Streptococcus mutans and other bacteria related to dental caries, with some extracts demonstrating an efficacy comparable to that of chlorhexidine. Furthermore, in vivo studies using plant-derived compounds incorporated in food derivatives, such as lollipops, have shown promising results by significantly reducing Streptococcus mutans in high-risk caries children. In vitro studies on plant-derived compounds have revealed bactericidal and bacteriostatic activity against S. mutans, suggesting their potential use as dental caries preventive agents. Medicinal plants, plant-derived phytochemicals, essential oils, and other food compounds have exhibited promising antimicrobial activity against oral pathogens, either by their anti-adhesion activity, the inhibition of extracellular microbial enzymes, or their direct action on microbial species and acid production. However, further research is needed to assess their antimicrobial activity and to evaluate the cytotoxicity and safety profiles of these plant-derived compounds before their widespread clinical use can be recommended.
Collapse
Affiliation(s)
- Konstantinos Tzimas
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Maria Antoniadou
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | | |
Collapse
|
3
|
Vulović S, Todorović A, Toljić B, Nikolić-Jakoba N, Tovilović TV, Milić-Lemić A. Evaluation of early bacterial adhesion on CAD/CAM dental materials: an in situ study. Odontology 2024:10.1007/s10266-024-00944-y. [PMID: 38705962 DOI: 10.1007/s10266-024-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The aim of this research was to determine if there are differences in early bacterial adhesion among CAD/CAM dental materials after 24 h exposure in the oral environment. One hundred twenty specimens were prepared according to the manufacturer's recommendations and divided into six groups: RBC (resin-based composite), PMMA (polymethyl methacrylate), PEEK (polyether ether ketone), ZP (zirconia polished), ZG (zirconia glazed), and cobalt-chromium alloy (CoCr alloy). Twenty healthy participants were instructed to carry an intraoral device with six specimens, one per group, for 24 h. Thereafter, real-time polymerase chain reaction (qPCR) and scanning electron microscopy (SEM) analyses enabled quantification and 2D view of biofilm formed on the specimens' surfaces. Kruskal-Wallis test and Dunn's post hoc analysis were used for inter-group comparison and data were presented as median (minimum-maximum). RBC specimens accumulated less bacteria, in comparison with ZG (p = 0.017) and PEEK specimens (p = 0.030), that dominated with the highest amount of adhered bacterial biofilm. PMMA, CoCr, and ZP specimens adhered more bacteria than RBC (p > 0.05), and less than ZG (p > 0.05) and PEEK (p > 0.05). The bacterial number varied considerably among participants. The obtained results enable a closer view into the susceptibility of CAD/CAM materials to microorganisms during the presence in the oral environment, which can be beneficial for a proper selection of these materials for a variety of dental restorations.
Collapse
Affiliation(s)
- Stefan Vulović
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| | - Aleksandar Todorović
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Boško Toljić
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Nikolić-Jakoba
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Vlajić Tovilović
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Milić-Lemić
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Tzimas K, Rahiotis C, Pappa E. Biofilm Formation on Hybrid, Resin-Based CAD/CAM Materials for Indirect Restorations: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1474. [PMID: 38611989 PMCID: PMC11012497 DOI: 10.3390/ma17071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Hybrid materials are a recent addition in the field of restorative dentistry for computer-aided design/computer-aided manufacturing (CAD/CAM) indirect restorations. The long-term clinical success of modern dental restorative materials is influenced by multiple factors. Among the characteristics affecting the longevity of a restoration, the mechanical properties and physicοchemical interactions are of utmost importance. While numerous researchers constantly evaluate mechanical properties, the biological background of resin-based CAD/CAM biomaterials is scarcely investigated and, therefore, less described in the literature. This review aims to analyze biofilm formation on the surfaces of novel, hybrid, resin-based CAD/CAM materials and evaluate the methodological protocols followed to assess microbial growth. It is demonstrated that the surface structure, the composition and the finishing and polishing procedures on the surface of a dental restorative material influence initial bacterial adhesion; however, most studies focus on in vitro protocols, and in vivo and/or in situ research of microbiomics in CAD/CAM restorative materials is lacking, obstructing an accurate understanding of the bioadhesion phenomenon in the oral cavity.
Collapse
Affiliation(s)
| | - Christos Rahiotis
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.T.); (E.P.)
| | | |
Collapse
|
5
|
Wang S, Fang L, Zhou H, Wang M, Zheng H, Wang Y, Weir MD, Masri R, Oates TW, Cheng L, Xu HHK, Liu F. Silica nanoparticles containing nano-silver and chlorhexidine respond to pH to suppress biofilm acids and modulate biofilms toward a non-cariogenic composition. Dent Mater 2024; 40:179-189. [PMID: 37951751 DOI: 10.1016/j.dental.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Dental caries is caused by acids from biofilms. pH-sensitive nanoparticle carriers could achieve improved targeted effectiveness. The objectives of this study were to develop novel mesoporous silica nanoparticles carrying nanosilver and chlorhexidine (nMS-nAg-Chx), and investigate the inhibition of biofilms as well as the modulation of biofilm to suppress acidogenic and promote benign species for the first time. METHODS nMS-nAg was synthesized via a modified sol-gel method. Carboxylate group functionalized nMS-nAg (COOH-nMS-nAg) was prepared and Chx was added via electrostatic interaction. Minimal inhibitory concentration (MIC), inhibition zone, and growth curves were evaluated. Streptococcus mutans (S. mutans), Streptococcus gordonii (S. gordonii), and Streptococcus sanguinis (S. sanguinis) formed multispecies biofilms. Metabolic activity, biofilm lactic acid, exopolysaccharides (EPS), and TaqMan real-time polymerase chain reaction (RT-PCR) were tested. Biofilm structures and biomass were observed by scanning electron microscopy (SEM) and live/dead bacteria staining. RESULTS nMS-nAg-Chx possessed pH-responsive properties, where Chx release increased at lower pH. nMS-nAg-Chx showed good biocompatibility. nMS-nAg-Chx exhibited a strong antibacterial function, reducing biofilm metabolic activity and lactic acid as compared to control (p < 0.05, n = 6). Moreso, biofilm biomass was dramatically suppressed in nMS-nAg-Chx groups. In control group, there was an increasing trend of S. mutans proportion in the multispecies biofilm, with S. mutans reaching 89.1% at 72 h. In sharp contrast, in nMS-nAg-Chx group of 25 μg/mL, the ratio of S. mutans dropped to 43.7% and the proportion of S. gordonii and S. sanguinis increased from 19.8% and 10.9 to 69.8% and 56.3%, correspondingly. CONCLUSION pH-sensitive nMS-nAg-Chx had potent antibacterial effects and modulated biofilm toward a non-cariogenic tendency, decreasing the cariogenic species nearly halved and increasing the benign species approximately twofold. nMS-nAg-Chx is promising for applications in mouth rinse and endodontic irrigants, and as fillers in resins to prevent caries.
Collapse
Affiliation(s)
- Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; The Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Huoxiang Zhou
- Laboratory of Microbiology and Immunology, Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Man Wang
- Laboratory of Microbiology and Immunology, Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Hao Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; The Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Huang X, Zhang M, Chang L, Zheng D, Lin W, Feng Y, Lu Y. Application Study of Novel Eggshell/Ag Combined with Pit and Fissure Sealants. Int J Nanomedicine 2023; 18:2911-2922. [PMID: 37283713 PMCID: PMC10241214 DOI: 10.2147/ijn.s403974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Objective The study aims to enhance the anti-caries performance of pit and fissure sealants through the synthesis of novel silver nanocomposites, and to evaluate their mechanical properties and biological safety in vitro and in vivo. Methods The antibacterial properties of synthetic eggshell/Ag were detected by bacterial inhibition zone, minimum bacteriostatic concentration, fluorescence staining and scanning electron microscopy. The synthetic products were then combined with pit and fissure sealants to prepare specimens, and their effects on mechanical properties, antibacterial properties and cytotoxicity were evaluated. Furthermore, an oral mucosal contact model of golden hamsters was established according to the ISO10933 standard to evaluate local stimulation and systemic effects. Results The novel nanocomposite eggshell/Ag was confirmed to exhibit strong broad-spectrum antibacterial activity, and that the eggshell/Ag-modified pit and fissure sealant had strong antibacterial properties against common dental caries bacterial biofilms, without any significant change in mechanical properties. The gradient dilution extract showed acceptable cytotoxicity, and in the golden hamster oral contact model, there were no visible abnormalities in local mucosal tissues, blood indices, or liver and kidney histopathology. Conclusions These findings suggest that eggshell/Ag combined with pit and fissure sealants has strong antibacterial activity and excellent biosafety in vitro and in vivo, making it a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Ming Zhang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Department of Conservative and Endodontic Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Lin Chang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yan Feng
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
7
|
Bishayi D, Srinivasan A, Mahabala KY, Natarajan S, Rao A, Nayak AP. A novel application of a bioactive material as a pit and fissure sealant: in vitro pilot study evaluating the sealing ability and penetration. Eur Arch Paediatr Dent 2022; 24:195-201. [PMID: 36575275 DOI: 10.1007/s40368-022-00773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE To compare the sealing ability and penetration of a bioactive material used as pit and fissure sealant to those of glass ionomer sealant. METHODS This was an in vitro experimental study conducted on 20 permanent teeth. For Group I of ten teeth, ACTIVA BioACTIVE-Base/Liner was applied as a sealant on pits and fissures, and the remaining ten teeth of Group II were sealed using glass ionomer cement. After thermocycling, the apex of the teeth was sealed using composite resin and they were immersed in 1% methylene blue solution, buffered at pH 7 for 24 h. Longitudinal sections were obtained from each tooth for evaluating the sealing ability and penetration, using a binocular light microscope at 4 × magnification. The obtained data were subjected to analysis using the Chi-square test and independent t test. RESULTS The comparison of the sealing ability and sealant penetration, between the two groups, showed statistically no significant difference (p = 0.104 and p = 1.0, respectively). CONCLUSION Bioactive material as a pit and fissure sealant, performed on par with glass ionomer sealant in terms of tested properties like sealing ability and penetration.
Collapse
Affiliation(s)
- D Bishayi
- Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - A Srinivasan
- Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - K Y Mahabala
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, India.
| | - S Natarajan
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - A Rao
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - A P Nayak
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Kim JY, Choi W, Mangal U, Seo JY, Kang TY, Lee J, Kim T, Cha JY, Lee KJ, Kim KM, Kim JM, Kim D, Kwon JS, Hong J, Choi SH. Multivalent network modifier upregulates bioactivity of multispecies biofilm-resistant polyalkenoate cement. Bioact Mater 2022; 14:219-233. [PMID: 35310353 PMCID: PMC8897648 DOI: 10.1016/j.bioactmat.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Joohee Lee
- Johns Hopkins University, 3400 N. Charles St., Mason Hall, Baltimore, MD 21218, USA
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin-Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
da Silva NDG, de Paiva PRB, Magalhães TVM, Braga AS, Santos PSDS, Henrique-Silva F, Magalhães AC, Buzalaf MAR. Effect of experimental and commercial artificial saliva formulations on the activity and viability of microcosm biofilm and on enamel demineralization for irradiated patients with head and neck cancer (HNC). BIOFOULING 2022; 38:674-686. [PMID: 36154759 DOI: 10.1080/08927014.2022.2111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
The effect of different artificial saliva formulations on biofilm activity and viability, and on enamel demineralization for head and neck cancer (HNC) patients was evaluated. Irradiated enamel samples were treated (1 min) with BioXtra® or with experimental formulations containing carboxymethylcellulose plus inorganic constituents alone (AS) or containing 0.1 mg mL-1 CaneCPI-5 (AS + Cane), 1.0 mg mL-1 hemoglobin (AS + Hb) or combination of both (AS + Cane + Hb). Phosphate-buffered-saline and chlorhexidine (0.12%) were negative and positive control, respectively. Biofilm was produced from the saliva of five male HNC patients, under 0.2% sucrose exposure for 5 days, and daily treated with the formulations (1 min). No significant effects were observed for the different experimental treatments. BioXtra® significantly reduced lactobacilli, demonstrating antibacterial potential for this group. Chlorhexidine was an effective treatment to significantly reduce all parameters, being an important antimicrobial and anticaries agent. Future in vitro studies must be performed using a new approach for the design of the experimental formulations.
Collapse
Affiliation(s)
- Natara Dias Gomes da Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Pedro Renato Bodo de Paiva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Aline Silva Braga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | |
Collapse
|
10
|
Jin J, Bhat R, Mangal U, Seo JY, Min Y, Yu J, Kim DE, Kuroda K, Kwon JS, Choi SH. Molecular weight tuning optimizes poly(2-methoxyethyl acrylate) dispersion to enhance the aging resistance and anti-fouling behavior of denture base resin. Biomater Sci 2022; 10:2224-2236. [PMID: 35344987 DOI: 10.1039/d2bm00053a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(methyl methacrylate) (PMMA)-based denture base resins easily develop oral bacterial and fungal biofilms, which may constitute a significant health risk. Conventional bacterial-resistant additives and coatings often cause undesirable changes in the resin. Reduced bacterial resistance over time in the harsh oral environment is a major challenge in resin development. Poly(2-methoxyethyl acrylate) (PMEA) has anti-fouling properties; however, due to the oily/rubbery state of this polymer, and its surface aggregation tendency in a resin mixture, its direct use as a resin additive is limited. This study aimed to optimize the use of PMEA in dental resins. Acrylic resins containing a series of PMEA polymers with various molecular weights (MWs) at different concentrations were prepared, and the mechanical properties, surface gloss, direct transmittance, and cytotoxicity were evaluated, along with the distribution of PMEA in the resin. Resins with low-MW PMEA (2000 g mol-1) (PMEA-1) at low concentrations satisfied the clinical requirements for denture resins, and the PMEA was homogeneously distributed. The anti-fouling performance of the resin was evaluated for protein adsorption, bacterial and fungal attachment, and saliva-derived biofilm formation. The PMEA-1 resin most effectively inhibited biofilm formation (∼50% reduction in biofilm mass and thickness compared to those of the control). Post-aged resins maintained their mechanical properties and anti-fouling activity, and polished surfaces had the same anti-biofilm behavior. Based on wettability and tribological results, we propose that the PMEA additive creates a non-stick surface to inhibit biofilm formation. This study demonstrated that PMEA additives can provide a stable and biocompatible anti-fouling surface, without sacrificing the mechanical properties and aesthetics of denture resins.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Rajani Bhat
- Department of Biologic & Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - YouJin Min
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehun Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kenichi Kuroda
- Department of Biologic & Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Silvestrin LB, Garcia IM, Visioli F, Collares FM, Leitune VCB. Physicochemical and biological properties of experimental dental adhesives doped with a guanidine-based polymer: an in vitro study. Clin Oral Investig 2022; 26:3627-3636. [PMID: 35001214 DOI: 10.1007/s00784-021-04332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objective of this study is to formulate experimental dental adhesives with different polyhexamethylene guanidine hydrochloride concentrations (PHMGH) and evaluate their physical, chemical, and biological properties. MATERIALS AND METHODS The experimental adhesives were formulated with 0 (control, GCTRL), 0.5 (G0.5%), 1 (G1%), or 2 (G2%) wt.% into the adhesive. The adhesives were analyzed for degree of conversion (DC%), softening in solvent (ΔKHN%), ultimate tensile strength (UTS), microtensile bond strength (μTBS) immediately and after 1 year of aging, antibacterial activity, and cytotoxicity. RESULTS There were no differences among groups for DC%, ΔKHN%, and UTS (p > 0.05%). There were no differences between each PHMGH-doped adhesive compared to GCTRL in the immediate μ-TBS (p > 0.05). Adhesives with at least 1 wt.% of PHMGH presented better stability of μ-TBS. PHMGH-doped adhesives showed improved longitudinal μ-TBS compared to GCTRL (p < 0.05). Lower Streptococcus mutans biofilm formation was observed for PHMGH-doped adhesives (p < 0.05). There was lower viability of planktonic S. mutans in the media in contact with the samples when at least 1 wt.% of PHGMGH was incorporated (p < 0.05). The formulated adhesives showed no cytotoxicity against pulp cells (p > 0.05). CONCLUSIONS The adhesive with 2 wt.% of PHMGH showed the highest antibacterial activity, without affecting the physicochemical properties and cytotoxicity, besides conferring stability for the dental adhesion. CLINICAL RELEVANCE PHMGH, a positively charged polymer, conveyed antibacterial activity to dental adhesives. Furthermore, it did not negatively affect the essential physicochemical and biocompatibility properties of the adhesives. More importantly, the incorporation of PHMGH provided stability for the μ-TBS compared to the control group without this additive.
Collapse
Affiliation(s)
- Lucas Bonfanti Silvestrin
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, 2492, Rio Branco, Porto Alegre, RS, 90035-003, Brazil
| | - Isadora Martini Garcia
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, 2492, Rio Branco, Porto Alegre, RS, 90035-003, Brazil
| | - Fernanda Visioli
- Oral Pathology Departament, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, Porto Alegre, RS, 90035-003, Brazil
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, 2492, Rio Branco, Porto Alegre, RS, 90035-003, Brazil
| | - Vicente Castelo Branco Leitune
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, 2492, Rio Branco, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
12
|
Li H, Huang Y, Zhou X, Zhu C, Han Q, Wang H, Xu HHK, Ren B, Cheng L. Intelligent pH-responsive dental sealants to prevent long-term microleakage. Dent Mater 2021; 37:1529-1541. [PMID: 34412907 DOI: 10.1016/j.dental.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Microleakage is a determinant factor of failures in sealant application. In this study, DMAEM (dodecylmethylaminoethyl methacrylate), a pH-responsive antibacterial agent, was incorporated into resin-based sealant for the first time. The objectives of this study were to: (1) investigate the long-term performance of DMAEM-modified sealants against oral microbial-aging; and (2) investigate the long-term preventive effect of DMAEM-modified sealants on microleakage. METHODS Depth-of-cure and cytotoxicity of DMAEM-modified sealants were measured. Then, an aging model using biofilm derived from the saliva of high caries experience children was conducted. After aging, microhardness and surface roughness were measured. Biofilm activity, lactic acid production and exopolysaccharide (EPS) production were measured. 16S rRNA gene sequencing were also performed. The effects of DMAEM on microleakage were tested using an in vitro microleakage assessment. RESULTS The addition of DMAEM with a mass fraction of 2.5-10% did not affect depth-of-cure values and cytotoxicity of sealants. Adding 2.5-10% DMAEM did not affect the surface roughness and microhardness after aging. Compared to control, adding 2.5-10% DMAEM reduced biofilm metabolic activity by more than 80%. The lactic acid production and EPS production were reduced by 50% in DMAEM groups. DMAEM-modified sealants maintained the microbial diversity of biofilm after aging, they also inhibited the growth of lactobacillus. The 5% and 10% DMAEM groups exhibited a significant reduction in microleakage compared to control. SIGNIFICANCE The long-term antibacterial activities against oral microbial-aging and the long-term microecosystem-regulating capabilities enabled DMAEM-modified sealant to prevent microleakage in sealant application and thus prevent dental caries.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Anti-bacterial and anti-microbial aging effects of resin-based sealant modified by quaternary ammonium monomers. J Dent 2021; 112:103767. [PMID: 34363889 DOI: 10.1016/j.jdent.2021.103767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Pit and fissure sealant is used in the prevention of dental caries. However, commercial pit and fissure sealant lacks persistent antibacterial properties. Dimethylaminododecyl methacrylate (DMADDM) was added to pit and fissure sealants to give it sustainable antibacterial properties and anti-microbial aging properties. METHODS Resin-based sealant was used as a control. Novel sealants were made with DMADDM. Atomic force microscope observation, curing depth, cytotoxicity, lactic acid measurement, hardness and microleakage were measured. Saliva-derived biofilms were grown on sealants. Biofilm metabolic activity, lactic acid production and biomass accumulation were measured. RESULTS Incorporating DMADDM did not increase the cytotoxicity or change the physical properties when the mass fraction of the DMADDM was 2.5-10%. The modification decreased the amount of bacterial biofilm, metabolic activity, lactic acid production and exopolysaccharide (EPS) in the saliva biofilms. It also provided anti-microbial aging properties. CONCLUSION The incorporation of DMADDM improved the antibacterial and anti-microbial aging effects of the material. It demonstrated a sustained antibacterial effect. The antibacterial and anti-microbial aging modification might be a potential choice for future clinical applications to inhibit dental caries, especially for children at high caries risk. CLINICAL SIGNIFICANCE The antibacterial and anti-microbial aging modification might be a potential choice for future clinical applications to prevent dental caries, especially for individuals at high caries risk.
Collapse
|
14
|
Siqueira WL, Canales MP, Crosara KTB, Marin LM, Xiao Y. Proteome difference among the salivary proteins adsorbed onto metallic orthodontic brackets and hydroxyapatite discs. PLoS One 2021; 16:e0254909. [PMID: 34319997 PMCID: PMC8318307 DOI: 10.1371/journal.pone.0254909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the atomic composition and the proteome of the salivary proteins adsorbed on the surface of orthodontic metallic bracket. For this, the atomic composition of orthodontic metallic brackets was analyzed with X-ray Photoelectron Spectroscopy (XPS). The acquired bracket pellicle was characterized after brackets were immersed in human whole saliva supernatant for 2 hours at 37°C. Hydroxyapatite (HA) discs were used as a control. Acquired pellicle was harvested from the HA discs (n = 12) and from the metallic brackets (n = 12). Proteomics based on mass spectrometry technology was used for salivary protein identification and characterization. Results showed that most of the proteins adsorbed on the surface of orthodontic metallic brackets and on the HA discs were identified specifically to each group, indicating a small overlapping between the salivary proteins on each study group. A total of 311 proteins present on the HA discs were unique to this group while 253 proteins were unique to metallic brackets, and only 45 proteins were common to the two groups. Even though most proteins were unique to each study group, proteins related to antimicrobial activity, lubrication, and remineralization were present in both groups. These findings demonstrate that the salivary proteins adsorbed on the bracket surface are dependent on the material molecular composition.
Collapse
Affiliation(s)
- Walter Luiz Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Maria Pia Canales
- Schulich Dentistry & Medicine, The University of Western Ontario, London, ON, Canada
| | | | - Lina Maria Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yizhi Xiao
- Schulich Dentistry & Medicine, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Garcia IM, Balhaddad AA, Ibrahim MS, Weir MD, Xu HH, Collares FM, Melo MAS. Antibacterial response of oral microcosm biofilm to nano-zinc oxide in adhesive resin. Dent Mater 2021; 37:e182-e193. [DOI: 10.1016/j.dental.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/26/2020] [Indexed: 01/30/2023]
|
16
|
Hu YT, Yu F, Tang XY, Wu WZ, Zhang P, Hu ZH, Chen JH, Xing XD, Xiao YH. The antibacterial effect and physical performance of pit and fissure sealants based on an antibacterial core-shell nanocomposite. J Mech Behav Biomed Mater 2021; 117:104414. [PMID: 33647728 DOI: 10.1016/j.jmbbm.2021.104414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
The application of pit and fissure sealants is a well-established method to prevent and treat early childhood caries. Resin-based sealants with antibacterial properties provide additional benefits for caries prevention in a cariogenic oral environment. The objective of this study was to evaluate the effect of an antibacterial core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) on the properties of a resin-based pit and fissure sealant. A commercialized pit and fissure sealant without fluoride, Concise (3M, ESPE, USA), was used as the parent material and negative control. Experimental antibacterial sealants were formulated by the addition of AgBr/BHPVP nanoparticles at mass fractions of 0.5, 1.0, and 1.5 wt% to the parent material. A fluoride-releasing sealant, Clinpro (3M, ESPE), was used as the positive control. Bacterial colony-forming unit (CFU) counts, metabolic activity tests, field emission-scanning electron microscopy (FE-SEM), and confocal laser scanning microscopy (CLSM) observations were used to evaluate the antibacterial properties of AgBr/BHPVP-modified sealants against Streptococcus mutans before and after five months of aging. The Vickers microhardness, degree of conversion, and microleakage level of the sealants were also investigated. According to the results of CFU counts and metabolic tests, sealants containing AgBr/BHPVP showed better contact-killing bactericidal activity against S. mutans than the two commercial sealants, irrespective of aging conditions (both P < 0.05). The AgBr/BHPVP-modified sealants also showed a significant inhibitory effect on the planktonic S. mutans around the cured sealant surfaces. In addition, the Vickers microhardness, degree of conversion, and microleakage level of the parent material were not damaged by modification with AgBr/BHPVP (P > 0.05). AgBr/BHPVP-modified pit and fissure sealant with a dual bactericidal mechanism is a promising option for the prevention of pit and fissure caries.
Collapse
Affiliation(s)
- Y T Hu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China; Department of Stomatology, The First Hospital of Kunming, Kunming 650011, China
| | - F Yu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China
| | - X Y Tang
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China
| | - W Z Wu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China
| | - P Zhang
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China
| | - Z H Hu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China
| | - J H Chen
- National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - X D Xing
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Y H Xiao
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming 650032, China.
| |
Collapse
|
17
|
Cardoso A, Fernandes JT, Bussadori SK, Horliana ACRT, Fernandes KPS, Gonçalves MLL, Motta LJ. Use of optical fluorescence for the diagnosis of dental biofilm in young permanent molars - A case series. Photodiagnosis Photodyn Ther 2021; 34:102216. [PMID: 33592330 DOI: 10.1016/j.pdpdt.2021.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fluorescence appears clearly in oral biofilm in red tones, showing the presence of microorganisms in regions where there is biofilm accumulation. This study aims to evaluate the applicability and effectiveness of the diagnosis of oral biofilm with the optical fluorescence technique using the EVINCE (Evidenciador Clínico - MMOptics, São Carlos, SP, Brazil) equipment. Furthermore, to compare the efficacy of the optical fluorescence diagnostic method with the traditional method of clinical disclosure of Fuchsin-based dye biofilm and to observe their combined use. METHODS Sixteen children, aged between 7 and 12, were included in this case series, following the Oral Hygiene Index - Simplificated (OHI-S) evaluation. They were evaluated by 3 different professionals. The 1 st evaluator checked the OHI-S observing only with EVINCE. In the second stage, a 2nd evaluator performed the traditional disclosure technique with Fucsina, and finally a 3rd evaluator who observed with EVINCE the teeth previously stained in stage 2, combining the two methods. Descriptive analysis of the variables was performed and comparative tests of repeated measures to evaluate differences between the results of the three evaluation methodologies. RESULTS There is no significant difference between the observation made only with EVINCE and with the traditional methodology of plaque disclosure. However, there is a difference when the two techniques are used in the third evaluation moment, showing that the combination could provide better results. CONCLUSIONS The association of both the conventional method and the use of EVINCE showed a very satisfactory result for the diagnosis of the presence of biofilm.
Collapse
Affiliation(s)
- Aretusa Cardoso
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil.
| | - Juliana Terra Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil.
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil; Dentistry College, Universidade Metropolitana de Santos, Francisco Glicério Avenue, 8 - Encruzilhada, 11045-002, Santos, SP, Brazil.
| | - Anna Carolina Ratto Tempestini Horliana
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil.
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil.
| | - Marcela Leticia Leal Gonçalves
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil; Dentistry College, Universidade Metropolitana de Santos, Francisco Glicério Avenue, 8 - Encruzilhada, 11045-002, Santos, SP, Brazil.
| | - Lara Jansiski Motta
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Vergueiro Street, 235/249, Liberdade, ZIP 01504-001, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
AlShahrani SS, AlAbbas MS, Garcia IM, AlGhannam MI, AlRuwaili MA, Collares FM, Ibrahim MS. The Antibacterial Effects of Resin-Based Dental Sealants: A Systematic Review of In Vitro Studies. MATERIALS 2021; 14:ma14020413. [PMID: 33467665 PMCID: PMC7830019 DOI: 10.3390/ma14020413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
This review aimed to assess the antimicrobial effects of different antibacterial agents/compounds incorporated in resin-based dental sealants. Four databases (PubMed, MEDLINE, Web of Science and Scopus) were searched. From the 8052 records retrieved, 275 records were considered eligible for full-text screening. Nineteen studies met the inclusion criteria. Data extraction and quality assessment was performed by two independent reviewers. Six of the nineteen included studies were judged to have low risk of bias, and the rest had medium risk of bias. Compounds and particles such as zinc, tin, Selenium, chitosan, chlorhexidine, fluoride and methyl methacrylate were found to be effective in reducing the colony-forming unit counts, producing inhibition zones, reducing the optical density, reducing the metabolic activities, reducing the lactic acid and polysaccharide production and neutralizing the pH when they are added to the resin-based dental sealants. In addition, some studies showed that the antibacterial effect was not significantly different after 2 weeks, 2 months and 6 months aging in distilled water or phosphate-buffered saline. In conclusion, studies have confirmed the effectiveness of adding antibacterial agents/compounds to dental sealants. However, we should consider that these results are based on laboratory studies with a high degree of heterogeneity.
Collapse
Affiliation(s)
- Saad Saeed AlShahrani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.S.A.); (M.S.A.); (M.I.A.); (M.A.A.)
| | - Mana’a Saleh AlAbbas
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.S.A.); (M.S.A.); (M.I.A.); (M.A.A.)
| | - Isadora Martini Garcia
- Dental Materials Laboratory, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (I.M.G.); (F.M.C.)
| | - Maha Ibrahim AlGhannam
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.S.A.); (M.S.A.); (M.I.A.); (M.A.A.)
| | - Muath Abdulrahman AlRuwaili
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.S.A.); (M.S.A.); (M.I.A.); (M.A.A.)
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (I.M.G.); (F.M.C.)
| | - Maria Salem Ibrahim
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
- Correspondence:
| |
Collapse
|
19
|
Mangal U, Kwon JS, Choi SH. Bio-Interactive Zwitterionic Dental Biomaterials for Improving Biofilm Resistance: Characteristics and Applications. Int J Mol Sci 2020; 21:E9087. [PMID: 33260367 PMCID: PMC7730019 DOI: 10.3390/ijms21239087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms are formed on surfaces inside the oral cavity covered by the acquired pellicle and develop into a complex, dynamic, microbial environment. Oral biofilm is a causative factor of dental and periodontal diseases. Accordingly, novel materials that can resist biofilm formation have attracted significant attention. Zwitterionic polymers (ZPs) have unique features that resist protein adhesion and prevent biofilm formation while maintaining biocompatibility. Recent literature has reflected a rapid increase in the application of ZPs as coatings and additives with promising outcomes. In this review, we briefly introduce ZPs and their mechanism of antifouling action, properties of human oral biofilms, and present trends in anti-biofouling, zwitterionic, dental materials. Furthermore, we highlight the existing challenges in the standardization of biofilm research and the future of antifouling, zwitterated, dental materials.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea;
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
20
|
Inhibitory Potential of Mangiferin on Glucansucrase Producing Streptococcus mutans Biofilm in Dental Plaque. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glucansucrase secreted by Streptococcus mutans and composed of virulence genes alters oral microbiota, creating adherent environment for structural bacteria colony forming dental biofilm. The present investigation studied the inhibitory and binding potentials of mangiferin against S. mutans and its enzyme glucansucrase implicated in biofilm formation. Antibacterial activity against planktonic S. mutans was carried out. Using reverse transcription PCR, the expression of crucial virulence genes, gtfB, gtfC, gtfD, gbpB, and comDE were determined. The effect of mangiferin on teeth surfaces biofilm was ascertained by scanning electron microscopy (SEM). Docking analysis of S. mutans glucansucrase and mangiferin revealed the binding energy of −7.35 and ten hydrogen interactions. Antibacterial study revealed that mangiferin was not lethal to planktonic S. mutans, but a concentration-dependent inhibition of glucansucrase activity was observed. The inhibitory effect of water-insoluble glucan synthesis was apparently more marked relative to water-soluble glucan synthesis attenuation. Mangiferin significantly downregulated the expression of the virulence genes, indicating a mechanism involving glucanotranferases, specifically inhibiting colony formation by attenuating bacterial adherence. SEM images revealed that S. mutans biofilm density was scanty in mangiferin treated teeth compared to non-treated control teeth. Our data therefore suggest that mangiferin inhibited S. mutans biofilms formation by attenuating glucansucrase activities without affecting bacteria growth.
Collapse
|
21
|
Ismail HS, Ali AI, Abo El-Ella MA, Mahmoud SH. Effect of different polishing techniques on surface roughness and bacterial adhesion of three glass ionomer-based restorative materials: In vitro study. J Clin Exp Dent 2020; 12:e620-e625. [PMID: 32905005 PMCID: PMC7462382 DOI: 10.4317/jced.56616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although many reports concluded that polishing of glass ionomers is crucial for smoother surface and limiting the adhesion of cariogenic bacteria, there is no specific surface treatment protocol recommended. A novel material in the same category was released recently claimed to have surface smoothness comparable to resin composite and bacterial adhesion less than other types of glass ionomers. In this study, different polishing systems were tested with three glass ionomers one of them is the novel material to find the most appropriate polishing protocol. Objectives: To evaluate and compare the surface roughness and bacterial adhesion to resin modified glass ionomer, bioactive ionic resin and conventional glass ionomer restorative materials after different polishing protocols in vitro. Material and Methods The materials tested includes resin modified glass ionomer, bioactive ionic resin, and conventional glass ionomer. The polishing protocols were divided into four groups: group 1 = (Mylar matrix strips, Control), group 2 = (one-step, PoGo), group 3 = (two-step, Prisma Gloss) and group 4 = (three-step, Sof-Lex). From each material, eleven cylindrical specimens were prepared for each group according to the manufacturers' instructions. The surface roughness for all specimens was measured using atomic force microscope in tapping mode. the same specimens were subjected to bacterial adhesion testing after being coated with artificial saliva. Data were analyzed with two-way analysis of variance followed by Post hoc multiple comparisons. Results The highest Ra and S. mutans adhesion values were recorded for all materials in two-step group. The lowest Ra and S. mutans adhesion values were seen in one-step and three step groups. Conclusions One-step polishing system was more effective and may be preferable for polishing of the three studied glass ionomer-based materials compared to two-step and three-step systems. Key words:Activa bioactive restorative, glass ionomer, surface roughness, bacterial adhesion, surface treatment.
Collapse
Affiliation(s)
- Hoda S Ismail
- Assistant Lecturer, Operative Dentistry Dept, Faculty of Dentistry, Mansoura University, Egypt
| | - Ashraf I Ali
- Associate Professor, Operative Dentistry Dept, Faculty of Dentistry, Mansoura University, Egypt
| | | | - Salah H Mahmoud
- Clinical Professor and Chairman of Operative Dentistry, Faculty of Dentistry, Mansoura University, Egypt
| |
Collapse
|
22
|
Kreth J, Merritt J, Pfeifer C, Khajotia S, Ferracane J. Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go. J Dent Res 2020; 99:1140-1149. [PMID: 32479134 PMCID: PMC7443996 DOI: 10.1177/0022034520927690] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dental composites are routinely placed as part of tooth restoration procedures. The integrity of the restoration is constantly challenged by the metabolic activities of the oral microbiome. This activity directly contributes to a less-than-desirable half-life for the dental composite formulations currently in use. Therefore, many new antimicrobial dental composites are being developed to counteract the microbial challenge. To ensure that these materials will resist microbiome-derived degradation, the model systems used for testing antimicrobial activities should be relevant to the in vivo environment. Here, we summarize the key steps in oral microbial colonization that should be considered in clinically relevant model systems. Oral microbial colonization is a clearly defined developmental process that starts with the formation of the acquired salivary pellicle on the tooth surface, a conditioned film that provides the critical attachment sites for the initial colonizers. Further development includes the integration of additional species and the formation of a diverse, polymicrobial mature biofilm. Biofilm development is discussed in the context of dental composites, and recent research is highlighted regarding the effect of antimicrobial composites on the composition of the oral microbiome. Future challenges are addressed, including the potential of antimicrobial resistance development and how this could be counteracted by detailed studies of microbiome composition and gene expression on dental composites. Ultimately, progress in this area will require interdisciplinary approaches to effectively mitigate the inevitable challenges that arise as new experimental bioactive composites are evaluated for potential clinical efficacy. Success in this area could have the added benefit of inspiring other fields in medically relevant materials research, since microbial colonization of medical implants and devices is a ubiquitous problem in the field.
Collapse
Affiliation(s)
- J. Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - J. Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - C.S. Pfeifer
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - S. Khajotia
- Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J.L. Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Fei X, Li Y, Weir MD, Baras BH, Wang H, Wang S, Sun J, Melo MAS, Ruan J, Xu HHK. Novel pit and fissure sealant containing nano-CaF 2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dent Mater 2020; 36:1241-1253. [PMID: 32571624 DOI: 10.1016/j.dental.2020.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pit and fissure sealants with antibacterial and remineralization properties have broad application prospects in caries prevention. The objectives of this study were to: (1) develop a novel pit and fissure sealant containing CaF2 nanoparticles (nCaF2) and dimethylaminohexadecyl methacrylate (DMAHDM); and (2) investigate the effects of nCaF2 and DMAHDM on biofilm response and fluoride (F) ion release for the first time. METHODS Helioseal F was used as a control. Bioactive sealants were formulated with DMAHDM and nCaF2. Flow properties, enamel shear bond strength, hardness and F ion releases were measured. Streptococcus mutans (S. mutans) biofilms were grown on sealants. Biofilm metabolic activity, lactic acid production, colony-forming units (CFU), and pH of biofilm culture medium were measured. RESULTS Adding 5% DMAHDM and 20% nCaF2 did not reduce the paste flow and enamel bond strength, compared to control (p < 0.05). Hardness of sealants with 20% nCaF2 and DMAHDM was higher than control (p < 0.05). The F ion release from 20% nCaF2 was much higher than that of commercial control (p < 0.05). The sealant with DMAHDM reduced the S. mutans biofilm CFU by 4 logs. The pH in biofilm medium of the new bioactive sealant was much higher (pH 6.8) than that of commercial sealant (pH 4.66) (p < 0.05). SIGNIFICANCE The new bioactive pit and fissure sealant with nCaF2 and DMAHDM achieved high fluoride release and strong antibacterial performance. This novel fluoride-releasing and antibacterial sealant is promising to inhibit caries and promote the remineralizaton of enamel and dentin.
Collapse
Affiliation(s)
- Xiuzhi Fei
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, and Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yuncong Li
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Bashayer H Baras
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Haohao Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratary of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Suping Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratary of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA
| | - Mary A S Melo
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, and Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Esteban Florez FL, Hiers RD, Zhao Y, Merritt J, Rondinone AJ, Khajotia SS. Optimization of a real-time high-throughput assay for assessment of Streptococcus mutans metabolism and screening of antibacterial dental adhesives. Dent Mater 2020; 36:353-365. [PMID: 31952798 PMCID: PMC7042092 DOI: 10.1016/j.dental.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The present work shows the optimization of a high-throughput bioluminescence assay to assess the metabolism of intact Streptococcus mutans biofilms and its utility as a screening method for nanofilled antibacterial dental materials. METHODS The assay was optimized by monitoring changes in bioluminescence mediated by variation of the experimental parameters investigated (growth media and sucrose concentration, inoculum:D-Luciferin ratio, dilution factor, inoculum volume, luminescence wavelength, replicate and luciferase metabolic activity). Confocal microscopy was then used to demonstrate the impact of biofilm growth conditions on the 3-D distribution of extracellular polymeric substance (EPS) within Streptococcus mutans biofilms and its implications as confounding factors in high-throughput studies (HTS). RESULTS Relative Luminescence Unit (RLU) values from the HTS optimization were analyzed by multivariate ANOVA (α = 0.05) and coefficients of variation, whereas data from 3-D structural parameters and RLU values of biofilms grown on experimental antibacterial dental adhesive resins were analyzed using General Linear Models and Student-Newman-Keuls post hoc tests (α = 0.05). Confocal microscopy demonstrated that biofilm growth conditions significantly influenced the quantity and distribution of EPS within the 3-D structures of the biofilms. An optimized HTS bioluminescence assay was developed and its applicability as a screening method in dentistry was demonstrated using nanofilled experimental antibacterial dental adhesive resins. SIGNIFICANCE The present study is anticipated to positively impact the direction of future biofilm research in dentistry, because it offers fundamental information for the design of metabolic-based assays, increases the current levels of standardization and reproducibility while offering a tool to decrease intra-study variability.
Collapse
Affiliation(s)
- Fernando Luis Esteban Florez
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Rochelle Denise Hiers
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Yan Zhao
- The University of Oklahoma Health Sciences Center, Department of Biostatistics and Epidemiology, College of Public Health, 801 NE 13th Street, Oklahoma City, OK, 73126, USA.
| | - Justin Merritt
- Oregon Health & Science University, Department of Restorative Dentistry, School of Dentistry, MRB424, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| | - Adam Justin Rondinone
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA.
| | - Sharukh Soli Khajotia
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
25
|
Myristyltrimethylammonium Bromide (MYTAB) as a Cationic Surface Agent to Inhibit Streptococcus mutans Grown over Dental Resins: An In Vitro Study. J Funct Biomater 2020; 11:jfb11010009. [PMID: 32075267 PMCID: PMC7151596 DOI: 10.3390/jfb11010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
This in vitro study evaluated the effect of myristyltrimethylammonium bromide (MYTAB) on the physical, chemical, and biological properties of an experimental dental resin. The resin was formulated with dental dimetacrylate monomers and a photoinitiator/co-initiator system. MYTAB was added at 0.5 (G0.5%), 1 (G1%), and 2 (G2%) wt %, and one group remained without MYTAB and was used as the control (GCtrl). The resins were analyzed for the polymerization kinetics, degree of conversion, ultimate tensile strength (UTS), antibacterial activity against Streptococcus mutans, and cytotoxicity against human keratinocytes. Changes in the polymerization kinetics profiling were observed, and the degree of conversion ranged from 57.36% (±2.50%) for G2% to 61.88% (±1.91%) for G0.5%, without a statistically significant difference among groups (p > 0.05). The UTS values ranged from 32.85 (±6.08) MPa for G0.5% to 35.12 (±5.74) MPa for GCtrl (p > 0.05). MYTAB groups showed antibacterial activity against biofilm formation from 0.5 wt % (p < 0.05) and against planktonic bacteria from 1 wt % (p < 0.05). The higher the MYTAB concentration, the higher the cytotoxic effect, without differences between GCtrl e G0.5% (p > 0.05). In conclusion, the addition of 0.5 wt % of MYTAB did not alter the physical and chemical properties of the dental resin and provided antibacterial activity without cytotoxic effect.
Collapse
|
26
|
Ibrahim MS, Garcia IM, Vila T, Balhaddad AA, Collares FM, Weir MD, Xu HHK, Melo MAS. Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomater Sci 2020; 8:3472-3484. [DOI: 10.1039/d0bm00370k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental sealant containing antibacterial and bioactive agents decreased biofilm formation due to the saliva of children at low and high risk of caries.
Collapse
Affiliation(s)
- Maria Salem Ibrahim
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Isadora Martini Garcia
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Taissa Vila
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Abdulrahman A. Balhaddad
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory
- School of Dentistry
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Michael D. Weir
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Hockin H. K. Xu
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Mary Anne S. Melo
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| |
Collapse
|
27
|
Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 2019; 11:28. [PMID: 31570700 PMCID: PMC6802668 DOI: 10.1038/s41368-019-0062-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Effective control of oral biofilm infectious diseases represents a major global challenge. Microorganisms in biofilms exhibit increased drug tolerance compared with planktonic cells. The present review covers innovative antimicrobial strategies for controlling oral biofilm-related infections published predominantly over the past 5 years. Antimicrobial dental materials based on antimicrobial agent release, contact-killing and multi-functional strategies have been designed and synthesized for the prevention of initial bacterial attachment and subsequent biofilm formation on the tooth and material surface. Among the therapeutic approaches for managing biofilms in clinical practice, antimicrobial photodynamic therapy has emerged as an alternative to antimicrobial regimes and mechanical removal of biofilms, and cold atmospheric plasma shows significant advantages over conventional antimicrobial approaches. Nevertheless, more preclinical studies and appropriately designed and well-structured multi-center clinical trials are critically needed to obtain reliable comparative data. The acquired information will be helpful in identifying the most effective antibacterial solutions and the most optimal circumstances to utilize these strategies.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center of PLA General Hospital, Beijing, PR China
| | - Franklin R Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
28
|
de Brito O, de Oliveira I, Monteiro G. Hydrolytic and Biological Degradation of Bulk-fill and Self-adhering Resin Composites. Oper Dent 2019; 44:E223-E233. [PMID: 31172875 DOI: 10.2341/17-390-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study aimed to evaluate the hydrolytic degradation (in vitro) and biodegradation (in situ) of different resin composites: bulk-fill (XTra Fill, XTF/VOCO; Tetric EvoCeram Bulk Fil, TBF/ Ivoclar Vivadent), self-adhering (Vertise Flow, VTF/ Kerr; Fusio Liquid Dentin, FUS/ Pentron Clinical), and a conventional resin composite (Filtek Z250, Z250/ 3M ESPE), which was used as a control. METHODS AND MATERIALS Seventy-five cylindrical specimens (7 × 1 mm) were desiccated and immersed into distilled water (DW), artificial saliva (AS), and 0.1 M lactic acid (LA) (n=5) for 180 days. Specimens were weighed after 180 days, after which they were desiccated again. The sorption (μg/mm3) and solubility (μg/mm3) were calculated based on ISO 4049. For the in situ phase, an intraoral palatal device containing five cylindrical specimens (5 × 1.5 mm) was used by 20 volunteers for seven days. Surface roughness was evaluated before and after this period to analyze the superficial biodegradation. Sorption and solubility data were submitted to Kruskal-Wallis and Mann-Whitney tests. The Wilcoxon signed-rank test was used to compare roughness at different observation times. The statistical significance for all tests was considered α=0.05. RESULTS For in vitro, self-adhering resin composites (VTF and FUS) showed, respectively, higher sorption values independent of the solution (62.55 and 50.81 μg/mm3 in DW, 67.26 and 50.46 μg/mm3 in AS, and 64.98 and 59.86 μg/mm3 in LA). Self-adhering VTF also had a greater solubility value in DW (22.18 μg/mm3) and FUS in LA (65.87 μg/mm3). In AS, the bulk-fill resin composite XTF showed higher solubility (22.13 μg/mm3). All resins were biodegraded, but the XTF specimens were more resistant (p=0.278) to chemical attack. CONCLUSIONS The self-adhering resin composites showed the highest hydrolytic degradation, and the bulk-fill resin composites exhibited comparable or superior results to the conventional resin composites. Not all resin composites underwent biodegradation in the in situ environment. The storage environment influenced the final characteristics of each material tested.
Collapse
|
29
|
Conrads G, Wendt LK, Hetrodt F, Deng ZL, Pieper D, Abdelbary MMH, Barg A, Wagner-Döbler I, Apel C. Deep sequencing of biofilm microbiomes on dental composite materials. J Oral Microbiol 2019; 11:1617013. [PMID: 31143408 PMCID: PMC6522937 DOI: 10.1080/20002297.2019.1617013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The microbiome on dental composites has not been studied in detail before. It has not been conclusively clarified whether restorative materials influence the oral microbiome. Methods: We used Illumina Miseq next-generation sequencing of the 16S V1-V2 region to compare the colonisation patterns of bovine enamel (BE) and the composite materials Grandio Flow (GF) and Grandio Blocs (GB) after 48 h in vivo in 14 volunteers. Applying a new method to maintain the oral microbiome ex vivo for 48 h also, we compared the microbiome on GF alone and with the new antimicrobial substance carolacton (GF+C). Results: All in vitro biofilm communities showed a higher diversity and richness than those grown in vivo but the very different atmospheric conditions must be considered. Contrary to expectations, there were only a few significant differences between BE and the composite materials GB and GF either in vivo or in vitro: Oribacterium, Peptostreptococcaceae [XI][G-1] and Streptococcus mutans were more prevalent and Megasphaera, Prevotella oulorum, Veillonella atypica, V. parvula, Gemella morbillorum, and Fusobacterium periodonticum were less prevalent on BE than on composites. In vivo, such preferences were only significant for Granulicatella adiacens (more prevalent on BE) and Fusobacterium nucleatum subsp. animalis (more prevalent on composites). On DNA sequence level, there were no significant differences between the biofilm communities on GF and GF+C. Conclusion: We found that the oral microbiome showed an increased richness when grown on various composites compared to BE in vitro, but otherwise changed only slightly independent of the in vivo or in vitro condition. Our new ex vivo biofilm model might be useful for pre-clinical testing of preventive strategies.
Collapse
Affiliation(s)
- Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Laura Katharina Wendt
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Franziska Hetrodt
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - Zhi-Luo Deng
- Group Microbial Communication, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
Di Salle A, Spagnuolo G, Conte R, Procino A, Peluso G, Rengo C. Effects of various prophylactic procedures on titanium surfaces and biofilm formation. J Periodontal Implant Sci 2018; 48:373-382. [PMID: 30619638 PMCID: PMC6312878 DOI: 10.5051/jpis.2018.48.6.373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria isolated from saliva. Methods Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis. Results AFM showed that the surface roughness increased after using the air-polishing device and ultrasonic scaler, while a significant reduction was observed after using a curette or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces. Conclusion In this study, both AFM and antibiofilm analyses indicated that using DZ abrasive paste could be considered as the prophylactic procedure of choice for managing peri-implant lesions and for therapy-resistant cases of periodontitis.
Collapse
Affiliation(s)
- Anna Di Salle
- Research Institute on Terrestrial Ecosystems, National Research Council, Naples, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy.,I. M. Sechenov First Moscow State Medical University, Institute of Dentistry, Moscow, Russia
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems, National Research Council, Naples, Italy
| | - Alfredo Procino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems, National Research Council, Naples, Italy
| | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Donovan TE, Marzola R, Murphy KR, Cagna DR, Eichmiller F, McKee JR, Metz JE, Albouy JP, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2018; 120:816-878. [DOI: 10.1016/j.prosdent.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023]
|
32
|
Silva TSO, Freitas AR, Pinheiro MLL, do Nascimento C, Watanabe E, Albuquerque RF. Oral Biofilm Formation on Different Materials for Dental Implants. J Vis Exp 2018. [PMID: 29985324 DOI: 10.3791/57756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental implants and their prosthetic components are prone to bacterial colonization and biofilm formation. The use of materials that provides low microbial adhesion may reduce the prevalence and progression of peri-implant diseases. In view of the oral environment complexity and oral biofilm heterogeneity, microscopy techniques are needed that can enable a biofilm analysis of the surfaces of teeth and dental materials. This article describes a series of protocols implemented for comparing oral biofilm formation on titanium and ceramic materials for prosthetic abutments, as well as the methods involved in oral biofilms analyses at the morphological and cellular levels. The in situ model to evaluate oral biofilm formation on titanium and zirconia materials for dental prosthesis abutments as described in this study provides a satisfactory preservation of the 48 h biofilm, thereby demonstrating methodological adequacy. Multiphoton microscopy allows the analysis of an area representative of the biofilm formed on the test materials. In addition, the use of fluorophores and the processing of the images using multiphoton microscopy allows the analysis of the bacterial viability in a very heterogeneous population of microorganisms. The preparation of biological specimens for electron microscopy promotes the structural preservation of biofilm, images with good resolution, and no artifacts.
Collapse
Affiliation(s)
- Thalisson S O Silva
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo
| | - Alice R Freitas
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo
| | - Marília L L Pinheiro
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo
| | - Cássio do Nascimento
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo
| | - Evandro Watanabe
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo
| | - Rubens F Albuquerque
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo;
| |
Collapse
|
33
|
Abstract
OBJECTIVE Resin-based composites are known to elute leachables that include unincorporated starting materials. The objective of this work was to determine the effect of common dental monomers and initiators on Streptococcus mutans biofilm metabolic activity and biomass. METHODS S. mutans biofilms were inoculated in the presence of bisphenol A glycerolate dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), and ethyl 4-(dimethylamino)benzoate (4E) at 0.01μg/mL up to 500μg/mL, depending on the aqueous solubility of each chemical. Biofilms were evaluated at 4h and 24h for pH (n=3-8), biomass via crystal violet (n=12), metabolic activity via tetrazolium salt (n=12), and membrane permeability for selected concentrations via confocal microscopy (n=6). Parametric and non-parametric statistics were applied. RESULTS 500μg/mL TEGDMA reduced 24h metabolic activity but not biomass, similar to prior results with leachables from undercured BisGMA-TEGDMA polymers. 50μg/mL BisGMA reduced biofilm biomass and activity, slightly delayed the pH drop, and decreased the number of cells with intact membranes. 100μg/mL CQ delayed the pH drop and metabolic activity at 4h but then significantly increased the 24h metabolic activity. 4E had no effect up to 10μg/mL. SIGNIFICANCE Monomers and initiators that leach from resin composites affect oral bacterial biofilm growth in opposite ways. Leachables, which can be released for extended periods of time, have the potential to alter oral biofilm biomass and activity and should be considered in developing and evaluating new dental materials.
Collapse
|