1
|
Dos Anjos HA, Ortiz MIG, Aguiar FHB, Dos Santos JJ, Rodrigues UP, Rischka K, Lima DANL. Effect of incorporation of calcium polyphosphate sub-microparticles in low-concentration bleaching gels on physical properties of dental enamel. Odontology 2024; 112:729-738. [PMID: 38148447 DOI: 10.1007/s10266-023-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
AIM To evaluate the bleaching efficacy and effects on enamel properties of experimental gels with carbamide peroxide (CP; 10%) or hydrogen peroxide (HP; 6%) containing calcium polyphosphate sub-microparticles (CaPPs). METHODS A total of 216 bovine tooth specimens were divided for microhardness and color analyses (n = 108) and block randomized into nine groups (n = 12): (G1) commercial CP (Whiteness Perfect, FGM; Brazil); (G2) experimental CP; (G3) CP-0.5%CaPPs; (G4) CP-1.5%CaPPs; (G5) commercial HP (Potenza Bianco, PHS; Brazil); (G6) experimental HP; (G7) HP-0.5%CaPPs; (G8) HP-1.5%CaPPs; (G9) artificial saliva. The gels' pH values were determined with a bench pH meter. Color (ΔE, ΔE00, ΔWID) and microhardness variation were evaluated before and after the therapy. Part of the specimens used for microhardness was submitted to the scanning electron microscopy (SEM) (n = 3) and energy-dispersive X-ray spectroscopy EDX (n = 3) analyses. Statistical analyses were performed in the R statistical software (α = 0.05). Linear mixed models for repeated measures in time were used to analyze microhardness and L* values. Generalized linear models were used to analyze the a*, b*, ΔE, ΔE00, and ΔWID, considering a group effect. The EDX data were analyzed using a one-way ANOVA with Tukey's test. RESULTS The gels' pH remained over 6,0. All gels effectively bleached the specimens and did not differ significantly. When compared to the control group, the hardness was significantly lower in the G1, G2, G6, and G7 groups. The G3, G4, G5, and G8 groups did not differ significantly (p > 0.05). CONCLUSION The incorporation of CaPPs in low-concentration whitening gels reduces its negative effects on microhardness without interfering with their bleaching efficacy.
Collapse
Affiliation(s)
- Hemanuelly Albuquerque Dos Anjos
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil.
| | - Mariângela Ivette Guanipa Ortiz
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil
| | | | | | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, IFAM, Bremen, Germany
| | - Débora Alves Nunes Leite Lima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil
| |
Collapse
|
2
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Ortiz MIG, Corrales Ureña YR, Aguiar FHB, Lima DANL, Rischka K. Enzymatically Driven Mineralization of a Calcium-Polyphosphate Bleaching Gel. Bioengineering (Basel) 2024; 11:83. [PMID: 38247960 PMCID: PMC10813067 DOI: 10.3390/bioengineering11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
To examined alkaline phosphatase enzyme (ALP) activity and the effects of incorporating it in the thickener solution of a hydrogen-peroxide-based bleaching gel containing calcium-polyphosphate (CaPP) on the orthophosphate (PO43-) levels, bleaching effectiveness, and enamel microhardness. ALP activity was assessed at different pH levels and H2O2 concentrations, and in H2O- and Tris-based thickeners. Circular dichroism (CD) was used to examine the ALP secondary structure in water-, Tris-, or H2O2-based mediums. The PO43- levels were evaluated in thickeners with and without ALP. Enamel/dentin specimens were allocated into the following groups: control (without bleaching); commercial (Whiteness-HP-Maxx); Exp-H (H2O-based); CaPP-H; ALP-H (CaPP+ALP); Exp-T (Tris-based); CaPP-T; and ALP-T (CaPP+ALP). Color changes (ΔE/ΔE00) and the bleaching index (ΔWID) were calculated, and surface (SMH) and cross-sectional microhardness (CSMH) were assessed. The two-way ANOVA and Tukey's post-hoc tests were used to compare ALP and PO43- levels; generalized linear models were used to examine: ΔE/ΔE00/SMH/CSMH; and Kruskal-Wallis and Dunn's tests were used for ΔWID (α = 5%). The ALP activity was higher at pH 9, lower in H2O2-based mediums, and similar in both thickeners. The CD-spectra indicated denaturation of the enzyme upon contact with H2O2. The PO43- levels were higher after incorporating ALP, and the ΔE/ΔE00/ΔWID were comparable among bleached groups. SMH was lower after bleaching in Exp-H, while CSMH was highest in ALP-T.
Collapse
Affiliation(s)
| | - Yendry Regina Corrales Ureña
- Faculty of Production Engineering, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
- National Laboratory of Nanotechnology LANOTEC—National Center of High Technology CeNAT, 1.3 Km North of the United States Embassy, San José 1174-1200, Costa Rica
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
| | - Débora Alves Nunes Leite Lima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
| | - Klaus Rischka
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany
| |
Collapse
|
4
|
Ortiz MIG, Dos Santos JJ, Rodrigues-Filho UP, Aguiar FHB, Rischka K, Lima DANL. Maintenance of enamel properties after bleaching with high-concentrated hydrogen-peroxide gel containing calcium polyphosphate sub-microparticles. Clin Oral Investig 2023; 27:5275-5285. [PMID: 37646909 DOI: 10.1007/s00784-023-05147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To assessed the physical and chemical properties of human-enamel after treatment with an experimental bleaching gel containing 35%-hydrogen peroxide (HP) and calcium polyphosphate sub-microparticles (CaPP). MATERIALS AND METHODS Enamel/dentin specimens (4 × 4 × 3 mm) were obtained (n = 120) and allocated to different groups: control (saliva only); experimental (HP35%); commercial (whiteness-HP-Maxx); CaPP0.5% (HP35% + CaPP0.5wt%); CaPP1.5% (HP35% + CaPP1.5wt%). Three sessions were performed. The specimens' color was assessed using a spectrophotometer and the color (ΔE/ΔE00) and bleaching index (ΔWID) determined. The surface roughness and microhardness were assessed with a roughness tester and Knoop indenter. Raman spectroscopy was performed to obtain the ratios between the areas under the 431, 580, and 1070 cm-1 and the 960 cm-1 bands (430:960, 580:960, 1070:960). Kruskal-Wallis and Dunn compared the color, Ra, and SMH data. The Raman data was analyzed with Kruskal-Wallis and Dunn (α = 5%). RESULTS The ΔE, ΔE00, and ΔWID were similar among the bleached groups (p > 0.05). The roughness was not different between the groups (p > 0.05). After the 3rd session, CaPP0.5% had higher microhardness than the experimental (p < 0.05). The 1070:960 was higher in the experimental than in the CaPP1.5% and control (p < 0.05). CONCLUSIONS In human enamel, CaPP did not alter the bleaching effectiveness or roughness, and additionally, CaPP-containing gels increased the microhardness and preserved the mineral content when compared to the experimental without CaPP. CLINICAL RELEVANCE Experimental bleaching gels containing calcium polyphosphate sub-microparticles as a mineral source reduce the mineral content alteration and superficial microhardness reduction, known potential side effects of the in-office bleaching treatments.
Collapse
Affiliation(s)
- Mariángela Ivette Guanipa Ortiz
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil
| | - Juliana Jarussi Dos Santos
- São Carlos Institute of Chemistry, Group of Chemistry of Hybrid and Inorganic Materials (GQMATHI), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Ubirajara Pereira Rodrigues-Filho
- São Carlos Institute of Chemistry, Group of Chemistry of Hybrid and Inorganic Materials (GQMATHI), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil
| | - Klaus Rischka
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
| | - Débora Alves Nunes Leite Lima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, P.O. BOX 52, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
5
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
6
|
Guanipa Ortiz MI, dos Santos JJ, Burga Sánchez J, Rodrigues-Filho UP, Aguiar FHB, Rischka K, Lima DANL. Calcium-Polyphosphate Submicroparticles (CaPP) Improvement Effect of the Experimental Bleaching Gels' Chemical and Cellular-Viability Properties. Gels 2023; 9:gels9010042. [PMID: 36661808 PMCID: PMC9857579 DOI: 10.3390/gels9010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The aim of this research was to develop and characterize the chemical and cellular-viability properties of an experimental high-concentration bleaching gel (35 wt%-H2O2) containing calcium-polyphosphate particles (CaPP) at two concentrations (0.5 wt% and 1.5 wt%). The CaPP submicroparticles were synthesized by coprecipitation, keeping a Ca:P ratio of 2:1. The CaPP morphology, size, and chemical and crystal profiles were characterized through scanning and transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction, respectively. The assessed bleaching gels were experimental (without CaPP); 0.5% CaPP; 1.5% CaPP; and commercial. The gels’ pH values and H2O2 concentrations (iodometric titration) were determined. The odontoblast-like cell viability after a gel’s exposure was assessed by the MTT assay. The pH and H2O2 concentration were compared through a repeated-measures analysis of variance (ANOVA) and a Tukey’s test and the cell viability through a one-way ANOVA and a Tukey’s test using a GraphPad Prism (α < 0.05). The CaPP particles were spherical (with Ca and P, 135.7 ± 80.95 nm size) and amorphous. The H2O2 concentration decreased in all groups after mixing (p < 0.001). The 0.5% CaPP resulted in more-stable pH levels and higher viability levels than the experimental one (p < 0.05). The successful incorporation of CaPP had a positive impact on the bleaching gel’s chemical and cellular-viability properties when compared to the experimental gel without these particles.
Collapse
Affiliation(s)
| | - Juliana Jarussi dos Santos
- Group of Chemistry of Hybrid and Inorganic Materials (GQMATHI), São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13563-120, Brazil
| | - Jonny Burga Sánchez
- Department of Physiological Science, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
| | - Ubirajara Pereira Rodrigues-Filho
- Group of Chemistry of Hybrid and Inorganic Materials (GQMATHI), São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13563-120, Brazil
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
| | - Klaus Rischka
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
- Correspondence:
| | - Débora Alves Nunes Leite Lima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, Brazil
| |
Collapse
|
7
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
9
|
Müller WE, Schröder HC, Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem Rev 2019; 119:12337-12374. [PMID: 31738523 PMCID: PMC6935868 DOI: 10.1021/acs.chemrev.9b00460] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Inorganic polyphosphates (polyP) consist of linear chains of orthophosphate residues, linked by high-energy phosphoanhydride bonds. They are evolutionarily old biopolymers that are present from bacteria to man. No other molecule concentrates as much (bio)chemically usable energy as polyP. However, the function and metabolism of this long-neglected polymer are scarcely known, especially in higher eukaryotes. In recent years, interest in polyP experienced a renaissance, beginning with the discovery of polyP as phosphate source in bone mineralization. Later, two discoveries placed polyP into the focus of regenerative medicine applications. First, polyP shows morphogenetic activity, i.e., induces cell differentiation via gene induction, and, second, acts as an energy storage and donor in the extracellular space. Studies on acidocalcisomes and mitochondria provided first insights into the enzymatic basis of eukaryotic polyP formation. In addition, a concerted action of alkaline phosphatase and adenylate kinase proved crucial for ADP/ATP generation from polyP. PolyP added extracellularly to mammalian cells resulted in a 3-fold increase of ATP. The importance and mechanism of this phosphotransfer reaction for energy-consuming processes in the extracellular matrix are discussed. This review aims to give a critical overview about the formation and function of this unique polymer that is capable of storing (bio)chemically useful energy.
Collapse
Affiliation(s)
- Werner E.G. Müller
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|