1
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
2
|
Ashfaq R, Kovács A, Berkó S, Budai-Szűcs M. Developments in Alloplastic Bone Grafts and Barrier Membrane Biomaterials for Periodontal Guided Tissue and Bone Regeneration Therapy. Int J Mol Sci 2024; 25:7746. [PMID: 39062989 PMCID: PMC11277074 DOI: 10.3390/ijms25147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontitis is a serious form of oral gum inflammation with recession of gingival soft tissue, destruction of the periodontal ligament, and absorption of alveolar bone. Management of periodontal tissue and bone destruction, along with the restoration of functionality and structural integrity, is not possible with conventional clinical therapy alone. Guided bone and tissue regeneration therapy employs an occlusive biodegradable barrier membrane and graft biomaterials to guide the formation of alveolar bone and tissues for periodontal restoration and regeneration. Amongst several grafting approaches, alloplastic grafts/biomaterials, either derived from natural sources, synthesization, or a combination of both, offer a wide variety of resources tailored to multiple needs. Examining several pertinent scientific databases (Web of Science, Scopus, PubMed, MEDLINE, and Cochrane Library) provided the foundation to cover the literature on synthetic graft materials and membranes, devoted to achieving periodontal tissue and bone regeneration. This discussion proceeds by highlighting potential grafting and barrier biomaterials, their characteristics, efficiency, regenerative ability, therapy outcomes, and advancements in periodontal guided regeneration therapy. Marketed and standardized quality products made of grafts and membrane biomaterials have been documented in this work. Conclusively, this paper illustrates the challenges, risk factors, and combination of biomaterials and drug delivery systems with which to reconstruct the hierarchical periodontium.
Collapse
Affiliation(s)
| | | | | | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.)
| |
Collapse
|
3
|
Padunglappisit C, Suwanprateep N, Chaiwerawattana H, Naruphontjirakul P, Panpisut P. An in vitro assessment of biaxial flexural strength, degree of monomer conversion, color stability, and ion release in provisional restorations containing Sr-bioactive glass nanoparticles. Biomater Investig Dent 2023; 10:2265393. [PMID: 38204473 PMCID: PMC10763873 DOI: 10.1080/26415275.2023.2265393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 01/12/2024] Open
Abstract
This study examined the mechanical and chemical properties of an experimental provisional restoration containing Sr-bioactive glass nanoparticles (Sr-BGNPs) compared to commercial provisional materials. The experimental material (TempS10) contained dimethacrylate monomers with added 10 wt% Sr-BGNPs. The degree of monomer conversion (DC) of self-curing (n = 5), biaxial flexural strength (BFS)/modulus (BFM) (n = 5), and color changes (ΔE*00) of materials in red wine (n = 5) were determined. Additionally, ion release (Ca, P, and Sr) in water at 2 weeks was examined (n = 3). The commercial materials tested included polymethyl methacrylate-based provisional material (Unifast) and bis-acrylic materials (Protemp4 and Cooltemp). TempS10 exhibited a comparable degree of monomer conversion (49%) to that of Protemp4 (60%) and Cooltemp (54%) (p > 0.05). The DC of Unifast (81%) was significantly higher than that of other materials (p < 0.05). TempS10 showed a BFS (126 MPa) similar to Cooltemp (102 MPa) and Unifast (123 MPa), but lower than Protemp4 (194 MPa). The immersion time for 2 weeks exhibited no detrimental effect on the strength and modulus of all materials. The highest ΔE*00 at 24 h and 2 weeks was observed with TempS10, followed by Cooltemp, Unifast, and Protemp4. Only TempS10 showed a detectable amount of Ca (0.69 ppm), P (0.12 ppm), and Sr (3.01 ppm). The experimental provisional resin restoration containing Sr-BGNPs demonstrated polymerization and strength comparable to those of bis-acryl provisional restorations but with the added benefit of ion-releasing properties. However, the experimental material demonstrated unsatisfactory color stability.
Collapse
Affiliation(s)
| | | | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
4
|
Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A. Efficacy and bone-contact biocompatibility of glass ionomer cement as a biomaterial for bone regeneration: A systematic review. J Mech Behav Biomed Mater 2023; 146:106099. [PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jatinangor, 45363, Indonesia.
| |
Collapse
|
5
|
Choe YE, Kim YJ, Jeon SJ, Ahn JY, Park JH, Dashnyam K, Mandakhbayar N, Knowles JC, Kim HW, Jun SK, Lee JH, Lee HH. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater 2021; 38:363-375. [PMID: 34933758 DOI: 10.1016/j.dental.2021.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria. MATERIALS AND METHODS Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant. RESULTS Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05). SIGNIFICANCE Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.
Collapse
Affiliation(s)
- Young-Eun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Se-Jeong Jeon
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jun-Yong Ahn
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Drug Research Institute, Mongolian Pharmaceutical University & Monos group, Ulaanbaatar 14250, Mongolia.
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Soo-Kyung Jun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Dental Hygiene, Hanseo University, 46 Hanseo 1-ro, Seosan, Chungcheongnam-do 31962, Republic of Korea.
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| |
Collapse
|
6
|
Zhu K, Zheng L, Xing J, Chen S, Chen R, Ren L. Mechanical, antibacterial, biocompatible and microleakage evaluation of glass ionomer cement modified by nanohydroxyapatite/polyhexamethylene biguanide. Dent Mater J 2021; 41:197-208. [PMID: 34759126 DOI: 10.4012/dmj.2021-096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aims to look for the best concentration of nanohydroxyapatite (NHA) and polyhexamethylene biguanide (PHMB) incorporated into glass ionomer cement (GIC) in accordance with ISO:9917-1 and evaluate its mechanical, antibacterial, biocompatible and microleakages properties. NHA was incorporated into Fuji Ⅱ GIC powder at 0-8.00 wt% concentration and specimens were prepared; the best concentration was sifted out according to ISO9917-1. Based on best NHA proportion, 0-0.80% PHMB was dispersed into powder and samples were respectively prepared. Mechanical properties include net setting time (ST), compressive strength (CS), microhardness (VNH), solubility and scanning electron microscopy (SEM) observation. Those met ISO standard were qualified to continue microleakage observation, antibacterial activity, and biocompatibility test. The results suggested that GIC/6%NHA/0.2% PHMB and GIC/6%NHA/0.4%PHMB showed great performances in mechanical, antibacterial, and microleakage improvements, and the cytotoxicity of modified GIC showed no statistical difference with pure GIC.
Collapse
Affiliation(s)
- Keshi Zhu
- Department of Orthodontics, Stomatological Hospital of Lanzhou University, Lanzhou University
| | - Long Zheng
- Department of Orthodontics, Stomatological Hospital of Lanzhou University, Lanzhou University
| | - Jiawei Xing
- Department of Orthodontics, Stomatological Hospital of Lanzhou University, Lanzhou University
| | - Sisi Chen
- Department of Orthodontics, Stomatological Hospital of Lanzhou University, Lanzhou University
| | - Ruimin Chen
- Department of Orthodontics, Stomatological Hospital of Lanzhou University, Lanzhou University
| | - Liling Ren
- Department of Orthodontics, Stomatological Hospital of Lanzhou University, Lanzhou University
| |
Collapse
|
7
|
Sasaki JI, Abe GL, Li A, Thongthai P, Tsuboi R, Kohno T, Imazato S. Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent 2021; 8:54-63. [PMID: 34104896 PMCID: PMC8158285 DOI: 10.1080/26415275.2021.1925556] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: In dentistry, barrier membranes are used for guided tissue regeneration (GTR) and guided bone regeneration (GBR). Various membranes are commercially available and extensive research and development of novel membranes have been conducted. In general, membranes are required to provide barrier function, biosafety, biocompatibility and appropriate mechanical properties. In addition, membranes are expected to be bioactive to promote tissue regeneration. Objectives: This review aims to organize the fundamental characteristics of the barrier membranes that are available and studied for dentistry, based on their components. Results: The principal components of barrier membranes are divided into nonbiodegradable and biodegradable materials. Nonbiodegradable membranes are manufactured from synthetic polymers, metals or composites of these materials. The first reported barrier membrane was made from expanded polytetrafluoroethylene (e-PTFE). Titanium has also been applied for dental regenerative therapy and shows favorable barrier function. Biodegradable membranes are mainly made from natural and synthetic polymers. Collagens are popular materials that are processed for clinical use by cross-linking. Aliphatic polyesters and their copolymers have been relatively recently introduced into GTR and GBR treatments. In addition, to improve the tissue regenerative function and mechanical strength of biodegradable membranes, inorganic materials such as calcium phosphate and bioactive glass have been incorporated at the research stage. Conclusions: Currently, there are still insufficient guidelines for barrier membrane choice in GTR and GBR, therefore dentists are required to understand the characteristics of barrier membranes.
Collapse
Affiliation(s)
- Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Gabriela L. Abe
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Aonan Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
8
|
Bhat A, Cvach N, Mizuno C, Ahn C, Zhu Q, Primus C, Komabayashi T. Ion Release From Prototype Surface Pre-Reacted Glass Ionomer (S-PRG) Sealer and EndoSequence BC Sealer. Eur Endod J 2021; 6:122-127. [PMID: 33762532 PMCID: PMC8056809 DOI: 10.14744/eej.2020.50470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Bioactive ions, when incorporated in an endodontic sealer, can contribute to the long-term success of endodontic therapy by combating the re-infection of a tooth and promoting the healing of the periapical bone. The objective of this study was to measure the release of boron, strontium, and silicon ions from surface pre-reacted glass ionomer (S-PRG) filler containing prototype endodontic sealer over a sustained period in comparison to EndoSequence BC sealer in a simulated clinical model using extracted human teeth in vitro. METHODS Twelve extracted human anterior teeth were instrumented using ProTaper Next (Dentsply Sirona, Johnson City, TN, USA) files up to size X3 (#30/variable taper) with copious 2.5% NaOCl irrigation. Teeth were obturated using a single-cone technique with a matching size tapered gutta-percha point and one of two endodontic sealers: prototype S-PRG (Shofu Inc., Kyoto, Japan) or EndoSequence BC (Brasseler, Savannah, GA, USA). The teeth were soaked in phosphate-buffered saline (PBS) solution for 336 hours. Periodically, 1-mL samples of the PBS were analyzed via an inductively coupled plasma mass spectrometer to determine the concentrations of ions released by the sealers. RESULTS The average (S.D.) cumulative release (ng/ml) of boron, silicon, and strontium ions over 2 weeks for the prototype S-PRG sealer was 8614.9 (1264.3), 35758.9 (5986.5), and 3965.2 (145.6), and for EndoSequence BC sealer was 1860.5 (82.7), 164648.7 (16468.1), and 227.7 (4.7). Generalized linear mixed model analysis showed significant differences in ion concentration among boron, silicon, and strontium over time between the two sealer groups (Boron: P<0.0001, Silicon: P=0.010, Strontium: P=0.028). Of the three ions, strontium had the lowest amount of release for both sealers. The prototype S-PRG sealer showed a rapid initial burst followed by a slow, continuous release of strontium ions. CONCLUSION The prototype S-PRG sealer released boron and strontium ions in higher cumulative concentrations over 2 weeks compared to the EndoSequence BC sealer. Both the prototype S-PRG and EndoSequence BC sealers released silicon ions, although significantly more were eluted from the EndoSequence BC sealer. Antimicrobial and osteogenic ion release from sealers is expected to positively influence the post-treatment control of microbial infections to improve periapical healing.
Collapse
Affiliation(s)
- Aparna Bhat
- From the University of New England College of Dental Medicine, Portland, ME, USA
| | - Nicholas Cvach
- From the University of New England College of Dental Medicine, Portland, ME, USA
| | - Cassia Mizuno
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, ME, USA
| | - Chul Ahn
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiang Zhu
- Division of Endodontology, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Carolyn Primus
- Augusta University Dental College of Georgia, Augusta, GA, USA
| | - Takashi Komabayashi
- From the University of New England College of Dental Medicine, Portland, ME, USA
| |
Collapse
|
9
|
Sasaki JI, Abe GL, Li A, Matsumoto T, Imazato S. Large three-dimensional cell constructs for tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:571-582. [PMID: 34408551 PMCID: PMC8366663 DOI: 10.1080/14686996.2021.1945899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Much research has been conducted on fabricating biomimetic biomaterials in vitro. Tissue engineering approaches are often conducted by combining cells, scaffolds, and growth factors. However, the degradation rate of scaffolds is difficult to control and the degradation byproducts occasionally limit tissue regeneration. To overcome these issues, we have developed a novel system using a thermo-responsive hydrogel that forms scaffold-free, three-dimensional (3D) cell constructs with arbitrary size and morphology. 3D cell constructs prepared using bone marrow-derived stromal stem cells (BMSCs) exhibited self-organizing ability and formed bone-like tissue with endochondral ossification. Endothelial cells were then introduced into the BMSC construct and a vessel-like structure was formed within the constructs. Additionally, the bone formation ability was promoted by endothelial cells and cell constructs could be freeze-dried to improve their clinical application. A pre-treatment with specific protein protectant allowed for the fabrication of novel bone substitutes composed only of cells. This 3D cell construct technology using thermo-responsive hydrogels was then applied to other cell species. Cell constructs composed of dental pulp stem cells were fabricated, and the resulting construct regenerated pulp-like tissue within a human pulpless tooth. In this review, we demonstrate the approaches for the in vitro fabrication of bone and dental pulp-like tissue using thermo-responsive hydrogels and their potential applications.
Collapse
Affiliation(s)
- Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Gabriela L Abe
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Aonan Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
- CONTACT Satoshi Imazato Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Wu X, Tang Z, Wu K, Bai Y, Lin X, Yang H, Yang Q, Wang Z, Ni X, Liu H, Yang L. Strontium-calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration. J Mater Chem B 2021; 9:5982-5997. [PMID: 34139000 DOI: 10.1039/d1tb00439e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularized bone tissue engineering is regarded as one of the optimal treatment options for large bone defects. The lack of angiogenic properties and unsatisfactory physicochemical performance restricts calcium phosphate cement (CPC) from application in vascularized bone tissue engineering. Our previous studies have developed a starch and BaSO4 incorporated calcium phosphate hybrid cement (CPHC) with improved mechanical strength and handling properties. However, the bioactivity-especially the angiogenic ability-is still absent and requires further improvement. Herein, based on the reported CPHC and the osteogenic and angiogenic properties of strontium (Sr) ions, a strontium-enhanced calcium phosphate hybrid cement (Sr-CPHC) was developed to improve both biological and physicochemical properties of CPC. Compared to CPC, the initial setting time of Sr-CPHC was prolonged from 2.2 min to 20.7 min. The compressive strength of Sr-CPHC improved from 11.21 MPa to 45.52 MPa compared with CPC as well. Sr-CPHC was biocompatible and showed promotion of alkaline phosphatase (ALP) activity, calcium nodule formation and osteogenic relative gene expression, suggesting high osteogenic-inductivity. Sr-CPHC also facilitated the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and up-regulated the expression of the vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1). In vivo evaluation showed marked new bone formation in a rat calvarial defect model with Sr-CPHC implanted. Sr-CPHC also exhibited enhancement of neovascularization in subcutaneous connective tissue in a rat subcutaneous implantation model. Thus, the Sr-CPHC with the dual effects of osteogenesis and angiogenesis shows great potential for clinical applications such as the repair of ischemic osteonecrosis and critical-size bone defects.
Collapse
Affiliation(s)
- Xiexing Wu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Ziniu Tang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Kang Wu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Yanjie Bai
- School of Public Health, Medical College, Soochow University, Suzhou 215006, P. R. China
| | - Xiao Lin
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Huilin Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, P. R. China
| | - Zheng Wang
- Department of Orthopedics, PLA General Hospital, Beijing 100853, P. R. China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, No. 68 Gehu Road, Changzhou 213003, P. R. China.
| | - Huiling Liu
- Institute of Orthopedics, Medical College, Soochow University, Suzhou 215006, P. R. China.
| | - Lei Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China and Center for Health Science and Engineering (CHSE), School of Materials Science and Engineering, Hebei University of Technology, No. 8 Guangrong Road, Tianjin 300130, P. R. China.
| |
Collapse
|
11
|
Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HH, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J 2020; 39:69-79. [PMID: 31932551 DOI: 10.4012/dmj.2019-350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Advancements in materials used for restorative and preventive treatment is being directed toward "bio-active" functionality. Incorporation of filler particles that release active components is a popular method to create bio-active materials, and many approaches are available to develop fillers with the ability to release components that provide "bio-protective" or "bio-promoting" properties; e.g. metal/calcium phosphate nanoparticles, multiple ion-releasing glass fillers, and non-biodegradable polymer particles. In this review paper, recent developments in cutting-edge filler technologies to release bio-active components are addressed and summarized according to their usefulness and functions, including control of bacterial infection, tooth strengthening, and promotion of tissue regeneration.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry.,Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Hockin Hk Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|