1
|
Sharma K, Chib S, Gupta A, Singh R, Chalotra R. Interplay between α-synuclein and parkin genes: Insights of Parkinson's disease. Mol Biol Rep 2024; 51:586. [PMID: 38683365 DOI: 10.1007/s11033-024-09520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Parkinson's disease (PD) is a complex and debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The pathogenesis of PD is intimately linked to the roles of two key molecular players, α-synuclein (α-syn) and Parkin. Understanding the intricate interplay between α-syn and Parkin is essential for unravelling the molecular underpinnings of PD. Their roles in synaptic function and protein quality control underscore their significance in neuronal health. Dysregulation of these processes, as seen in PD, highlights the potential for targeted therapeutic strategies aimed at restoring normal protein homeostasis and mitigating neurodegeneration. Investigating the connections between α-syn, Parkin, and various pathological mechanisms provides insights into the complex web of factors contributing to PD pathogenesis and offers hope for the development of more effective treatments for this devastating neurological disorder. The present compilation provides an overview of their structures, regional and cellular locations, associations, physiological functions, and pathological roles in the context of PD.
Collapse
Affiliation(s)
- Kajal Sharma
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Aniket Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
2
|
Labeling and measuring stressed mitochondria using a PINK1-based ratiometric fluorescent sensor. J Biol Chem 2021; 297:101279. [PMID: 34624312 PMCID: PMC8560995 DOI: 10.1016/j.jbc.2021.101279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are essential organelles that carry out a number of pivotal metabolic processes and maintain cellular homeostasis. Mitochondrial dysfunction caused by various stresses is associated with many diseases such as type 2 diabetes, obesity, cancer, heart failure, neurodegenerative disorders, and aging. Therefore, it is important to understand the stimuli that induce mitochondrial stress. However, broad analysis of mitochondrial stress has not been carried out to date. Here, we present a set of fluorescent tools, called mito-Pain (mitochondrial PINK1 accumulation index), which enable the labeling of stressed mitochondria. Mito-Pain uses PTEN-induced putative kinase 1 (PINK1) stabilization on mitochondria and quantifies mitochondrial stress levels by comparison with PINK1-GFP, which is stabilized under mitochondrial stress, and RFP-Omp25, which is constitutively localized on mitochondria. To identify compounds that induce mitochondrial stress, we screened a library of 3374 compounds using mito-Pain and identified 57 compounds as mitochondrial stress inducers. Furthermore, we classified each compound into several categories based on mitochondrial response: depolarization, mitochondrial morphology, or Parkin recruitment. Parkin recruitment to mitochondria was often associated with mitochondrial depolarization and aggregation, suggesting that Parkin is recruited to heavily damaged mitochondria. In addition, many of the compounds led to various mitochondrial morphological changes, including fragmentation, aggregation, elongation, and swelling, with or without Parkin recruitment or mitochondrial depolarization. We also found that several compounds induced an ectopic response of Parkin, leading to the formation of cytosolic puncta dependent on PINK1. Thus, mito-Pain enables the detection of stressed mitochondria under a wide variety of conditions and provides insights into mitochondrial quality control systems.
Collapse
|
3
|
Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons. Stem Cell Reports 2020; 14:75-90. [PMID: 31902706 PMCID: PMC6962705 DOI: 10.1016/j.stemcr.2019.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a complex and highly variable neurodegenerative disease. Familial PD is caused by mutations in several genes with diverse and mostly unknown functions. It is unclear how dysregulation of these genes results in the relatively selective death of nigral dopaminergic neurons (DNs). To address this question, we modeled PD by knocking out the PD genes PARKIN (PRKN), DJ-1 (PARK7), and ATP13A2 (PARK9) in independent isogenic human pluripotent stem cell (hPSC) lines. We found increased levels of oxidative stress in all PD lines. Increased death of DNs upon differentiation was found only in the PARKIN knockout line. Using quantitative proteomics, we observed dysregulation of mitochondrial and lysosomal function in all of the lines, as well as common and distinct molecular defects caused by the different PD genes. Our results suggest that precise delineation of PD subtypes will require evaluation of molecular and clinical data. CRISPR knockin of reporter in TH locus allows live tracking and isolation of DNs Large-scale 3D midbrain DN differentiation using spinner flask culture Phenotypic comparison of isogenic DNs harboring knockouts of PARKIN, DJ-1, or ATP13A2 Transcriptomics and quantitative proteomics studies determine common and distinct PD pathways
Collapse
|
4
|
Benson DL, Huntley GW. Are we listening to everything the PARK genes are telling us? J Comp Neurol 2019; 527:1527-1540. [PMID: 30680728 DOI: 10.1002/cne.24642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
The cardinal motor symptoms that define Parkinson's disease (PD) clinically have been recognized for over 200 years. That these symptoms arise following the loss of dopamine neurons in the substantia nigra has been known for the last 50. These long-established facts have fueled a broadly held expectation that degenerating dopaminergic neurons alone hold the key to understanding and curing PD. This prevalent expectation is at odds with the observation that many nonmotor symptoms, including depression and cognitive inflexibility among others, can appear years earlier than the overt dopaminergic neuron degeneration that drives motor abnormalities and are not improved by levodopa treatment. Thus, preserving or rescuing dopamine neuron health and function is of paramount importance, but this alone fails to capture the underlying neurobiology of earlier-appearing nonmotor symptoms. Insight into the complete landscape of disease-related abnormalities and the context in which they arise can be gleaned from a more comprehensive consideration of the PARK genes that are known to cause PD. Here, we make the case that a full incorporation of research showing when and where PARK genes are expressed as well as the impact of gene mutation on function throughout life, in tandem with research studying how dopaminergic neuron degeneration begins, is essential for a full understanding of the multi-dimensional etiology of PD. A broad view may also reveal something about long-term adjustments cells and systems make in response to gene mutation and help to identify mechanisms conferring the resilience or susceptibility of some cells and systems over others.
Collapse
Affiliation(s)
- Deanna L Benson
- Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences Icahn School of Medicine at Mount Sinai, New York, New York
| | - George W Huntley
- Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc Natl Acad Sci U S A 2017; 114:4489-4494. [PMID: 28396396 DOI: 10.1073/pnas.1616119114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus in early pregnancy increases the risk in infants of birth defects, such as neural tube defects (NTDs), known as diabetic embryopathy. NTDs are associated with hyperglycemia-induced protein misfolding and Caspase-8-induced programmed cell death. The present study shows that misfolded proteins are ubiquitinylated, suggesting that ubiquitin-proteasomal degradation is impaired. Misfolded proteins form aggregates containing ubiquitin-binding protein p62, suggesting that autophagic-lysosomal clearance is insufficient. Additionally, these aggregates contain the neurodegenerative disease-associated proteins α-Synuclein, Parkin, and Huntingtin (Htt). Aggregation of Htt may lead to formation of a death-inducing signaling complex of Hip1, Hippi, and Caspase-8. Treatment with chemical chaperones, such as sodium 4-phenylbutyrate (PBA), reduces protein aggregation in neural stem cells in vitro and in embryos in vivo. Furthermore, treatment with PBA in vivo decreases NTD rate in the embryos of diabetic mice, as well as Caspase-8 activation and cell death. Enhancing protein folding could be a potential interventional approach to preventing embryonic malformations in diabetic pregnancies.
Collapse
|
6
|
Vanhauwaert R, Verstreken P. Flies with Parkinson's disease. Exp Neurol 2015; 274:42-51. [PMID: 25708988 DOI: 10.1016/j.expneurol.2015.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is an incurable neurodegenerative disease. Most cases of the disease are of sporadic origin, but about 10% of the cases are familial. The genes thus far identified in Parkinson's disease are well conserved. Drosophila is ideally suited to study the molecular neuronal cell biology of these genes and the pathogenic mutations in Parkinson's disease. Flies reproduce quickly, and their elaborate genetic tools in combination with their small size allow researchers to analyze identified cells and neurons in large numbers of animals. Furthermore, fruit flies recapitulate many of the cellular and molecular defects also seen in patients, and these defects often result in clear locomotor and behavioral phenotypes, facilitating genetic modifier screens. Hence, Drosophila has played a prominent role in Parkinson's disease research and has provided invaluable insight into the molecular mechanisms of this disease.
Collapse
Affiliation(s)
- Roeland Vanhauwaert
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49,3000 Leuven, Belgium; Laboratory of Neuronal Communication, Leuven Institute for Neurodegenerative Disease (LIND), Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49,3000 Leuven, Belgium; Laboratory of Neuronal Communication, Leuven Institute for Neurodegenerative Disease (LIND), Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Hennis MR, Seamans KW, Marvin MA, Casey BH, Goldberg MS. Behavioral and neurotransmitter abnormalities in mice deficient for Parkin, DJ-1 and superoxide dismutase. PLoS One 2013; 8:e84894. [PMID: 24386432 PMCID: PMC3873453 DOI: 10.1371/journal.pone.0084894] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/27/2013] [Indexed: 01/10/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin-/-DJ-1-/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.
Collapse
Affiliation(s)
- Meghan R. Hennis
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katherine W. Seamans
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Marian A. Marvin
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bradford H. Casey
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Matthew S. Goldberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S. Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J Biol Chem 2013; 288:35824-39. [PMID: 24187134 DOI: 10.1074/jbc.m113.526632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase acts as a glucose sensor in pancreatic beta cells. Its posttranslational regulation is important but not yet fully understood. Therefore, a pancreatic islet yeast two-hybrid library was produced and searched for glucokinase-binding proteins. A protein sequence containing a full-length ubiquitin-like domain was identified to interact with glucokinase. Mammalian two-hybrid and fluorescence resonance energy transfer analyses confirmed the interaction between glucokinase and the ubiquitin-like domain in insulin-secreting MIN6 cells and revealed the highest binding affinity at low glucose. Overexpression of parkin, an ubiquitin E3 ligase exhibiting an ubiquitin-like domain with high homology to the identified, diminished insulin secretion in MIN6 cells but had only some effect on glucokinase activity. Overexpression of the elucidated ubiquitin-like domain or midnolin, containing exactly this ubiquitin-like domain, significantly reduced both intrinsic glucokinase activity and glucose-induced insulin secretion. Midnolin has been to date classified as a nucleolar protein regulating mouse development. However, we could not confirm localization of midnolin in nucleoli. Fluorescence microscopy analyses revealed localization of midnolin in nucleus and cytoplasm and co-localization with glucokinase in pancreatic beta cells. In addition we could show that midnolin gene expression in pancreatic islets is up-regulated at low glucose and that the midnolin protein is highly expressed in pancreatic beta cells and also in liver, muscle, and brain of the adult mouse and cell lines of human and rat origin. Thus, the results of our study suggest that midnolin plays a role in cellular signaling of adult tissues and regulates glucokinase enzyme activity in pancreatic beta cells.
Collapse
Affiliation(s)
- Anke Hofmeister-Brix
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany and
| | | | | | | | | | | |
Collapse
|
9
|
Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson's disease. Neurobiol Dis 2013; 62:113-23. [PMID: 24075852 DOI: 10.1016/j.nbd.2013.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/23/2013] [Accepted: 09/17/2013] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder behind Alzheimer's disease. There are currently no therapies proven to halt or slow the progressive neuronal cell loss in PD. A better understanding of the molecular and cellular causes of PD is needed to develop disease-modifying therapies. PD is an age-dependent disease that causes the progressive death of dopamine-producing neurons in the brain. Loss of substantia nigra dopaminergic neurons results in locomotor symptoms such as slowness of movement, tremor, rigidity and postural instability. Abnormalities in other neurotransmitters, such as serotonin, may also be involved in both the motor and non-motor symptoms of PD. Most cases of PD are sporadic but many families show a Mendelian pattern of inherited Parkinsonism and causative mutations have been identified in genes such as Parkin, DJ-1, PINK1, alpha-synuclein and leucine rich repeat kinase 2 (LRRK2). Although the definitive causes of idiopathic PD remain uncertain, the activity of the antioxidant enzyme glutathione peroxidase 1 (Gpx1) is reduced in PD brains and has been shown to be a key determinant of vulnerability to dopaminergic neuron loss in PD animal models. Furthermore, Gpx1 activity decreases with age in human substantia nigra but not rodent substantia nigra. Therefore, we crossed mice deficient for both Parkin and DJ-1 with mice deficient for Gpx1 to test the hypothesis that loss-of-function mutations in Parkin and DJ-1 cause PD by increasing vulnerability to Gpx1 deficiency. Surprisingly, mice lacking Parkin, DJ-1 and Gpx1 have increased striatal dopamine levels in the absence of nigral cell loss compared to wild type, Gpx1(-/-), and Parkin(-/-)DJ-1(-/-) mutant mice. Additionally, Parkin(-/-)DJ-1(-/-) mice exhibit improved rotarod performance and have increased serotonin in the striatum and hippocampus. Stereological analysis indicated that the increased serotonin levels were not due to increased serotonergic projections. The results of our behavioral, neurochemical and immunohistochemical analyses reveal that PD-linked mutations in Parkin and DJ-1 cause dysregulation of neurotransmitter systems beyond the nigrostriatal dopaminergic circuit and that loss-of-function mutations in Parkin and DJ-1 lead to adaptive changes in dopamine and serotonin especially in the context of Gpx1 deficiency.
Collapse
|
10
|
de Vries RLA, Przedborski S. Mitophagy and Parkinson's disease: be eaten to stay healthy. Mol Cell Neurosci 2012; 55:37-43. [PMID: 22926193 DOI: 10.1016/j.mcn.2012.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders. Pathologically, it is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although most occurrences have an unknown cause, several gene mutations have been linked to familial forms of PD. The discovery of some of the proteins encoded by these genes, including Parkin, PINK1 and DJ-1, at the mitochondria offered a new perspective on the involvement of mitochondria in PD. Specifically, these proteins are thought to be involved in the maintenance of a healthy pool of mitochondria by regulating their turnover by mitochondrial autophagy, or mitophagy. In this review, we discuss recent studies on the role of mitophagy in PD. We present three putative models whereby PINK1 and Parkin may affect mitophagy; 1) by shifting the balance between fusion and fission of the mitochondrial network, 2) by modulating mitochondrial motility and 3) by directly recruiting the autophagic machinery to damaged mitochondria. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Rosa L A de Vries
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
11
|
Palubinsky AM, Martin JA, McLaughlin B. The role of central nervous system development in late-onset neurodegenerative disorders. Dev Neurosci 2012; 34:129-39. [PMID: 22572535 PMCID: PMC6065248 DOI: 10.1159/000336828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
The human brain is dependent upon successfully maintaining ionic, energetic and redox homeostasis within exceptionally narrow margins for proper function. The ability of neurons to adapt to genetic and environmental perturbations and evoke a 'new normal' can be most fully appreciated in the context of neurological disorders in which clinical impairments do not manifest until late in life, although dysfunctional proteins are expressed early in development. We now know that proteins controlling ATP generation, mitochondrial stability, and the redox environment are associated with neurological disorders such as Parkinson's disease and amyotrophic lateral sclerosis. Generally, focus is placed on the role that early or long-term environmental stress has in altering the survival of cells targeted by genetic dysfunctions; however, the central nervous system undergoes several periods of intense stress during normal maturation. One of the most profound periods of stress occurs when 50% of neurons are removed via programmed cell death. Unfortunately, we have virtually no understanding of how these events proceed in individuals who harbor mutations that are lethal later in life. Moreover, there is a profound lack of information on circuit formation, cell fate during development and neurochemical compensation in either humans or the animals used to model neurodegenerative diseases. In this review, we consider the current knowledge of how energetic and oxidative stress signaling differs between neurons in early versus late stages of life, the influence of a new group of proteins that can integrate cell stress signals at the mitochondrial level, and the growing body of evidence that suggests early development should be considered a critical period for the genesis of chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Amy M. Palubinsky
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob A. Martin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| | - BethAnn McLaughlin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Impaired in vivo dopamine release in parkin knockout mice. Brain Res 2010; 1352:214-22. [PMID: 20620130 DOI: 10.1016/j.brainres.2010.06.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/15/2010] [Accepted: 06/25/2010] [Indexed: 11/20/2022]
Abstract
parkin is the most frequent causative gene among familial Parkinson's disease (PD). Although parkin deficiency induces autosomal recessive juvenile parkinsonism (AR-JP, PARK2) in humans, parkin knockout (PKO) mice consistently show few signs of dopaminergic degeneration. We aimed to directly measure evoked extracellular dopamine (DA) overflow in the striatum with in vivo voltammetry. The amplitude of evoked DA overflow was low in PKO mice. The half-life time of evoked DA overflow was long in PKO mice suggesting lower release and uptake of dopamine. Facilitation of DA overflow by repetitive stimulation enhanced in the older PKO mice. Decreased dopamine release and uptake in young PKO mice suggest early pre-symptomatic changes in dopamine neurotransmission, while the enhanced facilitation in the older PKO mice may reflect a compensatory adaptation in dopamine function during the late pre-symptomatic phase of Parkinson's disease. Our results showed parkin deficiency may affect DA release in PKO mice, although it does not cause massive nigral degeneration or parkinsonian symptoms as in humans.
Collapse
|
13
|
|
14
|
Brody KM, Taylor JM, Wilson GR, Delatycki MB, Lockhart PJ. Regional and cellular localisation of Parkin Co-Regulated Gene in developing and adult mouse brain. Brain Res 2008; 1201:177-86. [DOI: 10.1016/j.brainres.2008.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 12/15/2022]
|
15
|
Glenn KA, Nelson RF, Wen HM, Mallinger AJ, Paulson HL. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J Biol Chem 2008; 283:12717-29. [PMID: 18203720 DOI: 10.1074/jbc.m709508200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Post-translational modification of proteins regulates many cellular processes. Some modifications, including N-linked glycosylation, serve multiple functions. For example, the attachment of N-linked glycans to nascent proteins in the endoplasmic reticulum facilitates proper folding, whereas retention of high mannose glycans on misfolded glycoproteins serves as a signal for retrotranslocation and ubiquitin-mediated proteasomal degradation. Here we examine the substrate specificity of the only family of ubiquitin ligase subunits thought to target glycoproteins through their attached glycans. The five proteins comprising this FBA family (FBXO2, FBXO6, FBXO17, FBXO27, and FBXO44) contain a conserved G domain that mediates substrate binding. Using a variety of complementary approaches, including glycan arrays, we show that each family member has differing specificity for glycosylated substrates. Collectively, the F-box proteins in the FBA family bind high mannose and sulfated glycoproteins, with one FBA protein, FBX044, failing to bind any glycans on the tested arrays. Site-directed mutagenesis of two aromatic amino acids in the G domain demonstrated that the hydrophobic pocket created by these amino acids is necessary for high affinity glycan binding. All FBA proteins co-precipitated components of the canonical SCF complex (Skp1, Cullin1, and Rbx1), yet FBXO2 bound very little Cullin1, suggesting that FBXO2 may exist primarily as a heterodimer with Skp1. Using subunit-specific antibodies, we further demonstrate marked divergence in tissue distribution and developmental expression. These differences in substrate recognition, SCF complex formation, and tissue distribution suggest that FBA proteins play diverse roles in glycoprotein quality control.
Collapse
Affiliation(s)
- Kevin A Glenn
- Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
16
|
Zhu XR, Maskri L, Herold C, Bader V, Stichel CC, Güntürkün O, Lübbert H. Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci 2007; 26:1902-11. [PMID: 17883413 DOI: 10.1111/j.1460-9568.2007.05812.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutations in the parkin gene are the major cause of early-onset familial Parkinson's disease (PD). We previously reported the generation and analysis of a knockout mouse carrying a deletion of exon 3 in the parkin gene. F1 hybrid pa+/- mice were backcrossed to wild-type C57Bl/6 for three more generations to establish a pa-/-(F4) mouse line. The appearance of tyrosine hydroxylase-positive neurons was normal in young and aged pa-/- (F4) animals. Loss of parkin function in mice did not enhance vulnerability of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. However, the pa-/- (F4) mice displayed impaired exploration and habituation to a new environment and exhibited thigmotaxis behaviour in the open field and Morris water maze. Abnormal anxiety-related behaviour of pa-/- (F4) mice was also observed in the light/dark exploration test paradigm. Dopamine metabolism was enhanced in the striatum of pa-/- (F4) mice, as revealed by increased homovanillic acid (HVA) content and a reduced ratio of dihydroxyphenylacetic acid (DOPAC)/HVA. The alterations found in the dopaminergic system could be responsible for the behavioural impairments of pa-/- (F4) mice. Consistent with a recent observation of cognitive dysfunction in parkin-linked patients with PD, our findings provide evidence of a physiological role of parkin in non-motor behaviour, possibly representing a disease stage that precedes dopaminergic neuron loss.
Collapse
Affiliation(s)
- Xin-Ran Zhu
- Department of Animal Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Perez FA, Curtis WR, Palmiter RD. Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity. BMC Neurosci 2005; 6:71. [PMID: 16375772 PMCID: PMC1351194 DOI: 10.1186/1471-2202-6-71] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 12/24/2005] [Indexed: 11/29/2022] Open
Abstract
Background Autosomal recessive juvenile parkinsonism (AR-JP) is caused by mutations in the parkin gene which encodes an E3 ubiquitin-protein ligase. Parkin is thought to be critical for protecting dopaminergic neurons from toxic insults by targeting misfolded or oxidatively damaged proteins for proteasomal degradation. Surprisingly, mice with targeted deletions of parkin do not recapitulate robust behavioral or pathological signs of parkinsonism. Since Parkin is thought to protect against neurotoxic insults, we hypothesized that the reason Parkin-deficient mice do not develop parkinsonism is because they are not exposed to appropriate environmental triggers. To test this possibility, we challenged Parkin-deficient mice with neurotoxic regimens of either methamphetamine (METH) or 6-hydroxydopamine (6-OHDA). Because Parkin function has been linked to many of the pathways involved in METH and 6-OHDA toxicity, we predicted that Parkin-deficient mice would be more sensitive to the neurotoxic effects of these agents. Results We found no signs consistent with oxidative stress, ubiquitin dysfunction, or degeneration of striatal dopamine neuron terminals in aged Parkin-deficient mice. Moreover, results from behavioral, neurochemical, and immunoblot analyses indicate that Parkin-deficient mice are not more sensitive to dopaminergic neurotoxicity following treatment with METH or 6-OHDA. Conclusion Our results suggest that the absence of a robust parkinsonian phenotype in Parkin-deficient mice is not due to the lack of exposure to environmental triggers with mechanisms of action similar to METH or 6-OHDA. Nevertheless, Parkin-deficient mice could be more sensitive to other neurotoxins, such as rotenone or MPTP, which have different mechanisms of action; therefore, identifying conditions that precipitate parkinsonism specifically in Parkin-deficient mice would increase the utility of this model and could provide insight into the mechanism of AR-JP. Alternatively, it remains possible that the absence of parkinsonism in Parkin-deficient mice could reflect fundamental differences between the function of human and mouse Parkin, or the existence of a redundant E3 ubiquitin-protein ligase in mouse that is not found in humans. Therefore, additional studies are necessary to understand why Parkin-deficient mice do not display robust signs of parkinsonism.
Collapse
Affiliation(s)
- Francisco A Perez
- Graduate Program in Neurobiology and Behavior, Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Wendy R Curtis
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Okui M, Yamaki A, Takayanagi A, Kudoh J, Shimizu N, Shimizu Y. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases. Exp Cell Res 2005; 309:220-8. [PMID: 15963499 DOI: 10.1016/j.yexcr.2005.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/11/2005] [Accepted: 05/17/2005] [Indexed: 11/18/2022]
Abstract
Human single-minded 2 (SIM2) is a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors and is associated with the etiology of Down syndrome phenotype. Here, we examined a possibility of the post-translational modification of SIM2 protein by transfecting various expression constructs followed by the analysis with immunoprecipitation and Western blotting. In fact, transient expression of SIM2 cDNA in HEK293 cells revealed poly-ubiquitination of SIM2 protein. In the stable transfectants, a proteasome inhibitor MG132 protected the poly-ubiquitinated SIM2 protein from degradation. Furthermore, in the cells co-transfected with SIM2 and each of four different E3 ubiquitin ligases, SIM2 was immunoprecipitated with the RING-IBR-RING-type E3 ubiquitin ligases, Parkin and HHARI, but it was not immunoprecipitated with other E3 ligases, such as one RING-type Siah-1 and the PHD type AIRE. A series of deletion constructs revealed that Parkin actually binds to SIM2 with the IBR (294-377)-RING2 (378-465) domains and that the sites for poly-ubiquitination of SIM2 reside within the PAS1-PAS2 region (aa 141-289). We postulated that transcription factor SIM2 and E3 ubiquitin ligase Parkin may interact each other to play an important physiological role in the brain development which is controlled by ubiquitination.
Collapse
Affiliation(s)
- Michiyo Okui
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Serdaroglu P, Tasli H, Hanagasi H, Emre M. Parkin expression in human skeletal muscle. J Clin Neurosci 2005; 12:927-9. [PMID: 16257218 DOI: 10.1016/j.jocn.2005.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/11/2005] [Indexed: 11/30/2022]
Abstract
Parkin is known to be present in human neurons and peripheral nerves. Using an antibody against parkin protein we have now demonstrated that parkin is also expressed in the sarcoplasm and sarcolemmal region of human skeletal muscle fibres. We have also found different age-related patterns of expression with increase in intensity and organization of distribution at older ages. These findings suggest a change in the functional role of parkin in skeletal muscle with ageing and may contribute to understanding the mechanisms of muscle aging.
Collapse
Affiliation(s)
- P Serdaroglu
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
20
|
Tan EK, Shen H, Tan JMM, Lim KL, Fook-Chong S, Hu WP, Paterson MC, Chandran VR, Yew K, Tan C, Yuen Y, Pavanni R, Wong MC, Puvan K, Zhao Y. Differential expression of splice variant and wild-type parkin in sporadic Parkinson's disease. Neurogenetics 2005; 6:179-84. [PMID: 16086186 DOI: 10.1007/s10048-005-0001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Altered splicing of parkin under cellular stress could lead to changes in gene expression and altered protein activity. The causative role of parkin in sporadic Parkinson's disease (PD) is unknown. OBJECTIVES We described a parkin splice variant (SV) in the substantia nigra and leukocytes of sporadic PD patients. Using a case control methodology, we investigated the exon 4 SV (E4SV) and wild-type parkin expression in the leukocytes of sporadic PD patients and healthy individuals. METHODS/RESULTS We identified a parkin E4SV in the substantia nigra and leukocytes of sporadic PD patients and controls by reverse transcriptase-polymerase chain reaction (PCR). The exon 4 (122 bp) deletion resulted in a reading frame shift over the junction of exons 3-5 and a stop codon (tga) 17 bp downstream from exon 3. The translated truncated protein was associated with a total loss of the two-RING finger functional domain. Utilizing TaqMan real-time PCR with probes located across the junction of exons 3-4 or 3-5, we demonstrated an over-expression of E4SV/wild-type parkin ratio in the leukocytes of sporadic PD patients compared to age-, gender-, and race-matched controls (p<0.0005). A multivariate regression analysis demonstrated that the ratio of E4SV/wild-type parkin expression increased with age in PD patients, but this was not observed in the controls (p<0.0005). CONCLUSION The relative expression of E4SV/wild type parkin was increased in sporadic PD compared to healthy controls. Based on our observations, further functional studies to determine the pathophysiologic role of E4SV in sporadic PD patients will be of importance.
Collapse
Affiliation(s)
- E K Tan
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 2005; 102:2174-9. [PMID: 15684050 PMCID: PMC548311 DOI: 10.1073/pnas.0409598102] [Citation(s) in RCA: 344] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human parkin gene cause autosomal recessive juvenile parkinsonism, a heritable form of Parkinson's disease (PD). To determine whether mutations in the mouse parkin gene (Park2) also result in a parkinsonian phenotype, we generated mice with a targeted deletion of parkin exon 2. Using an extensive behavioral screen, we evaluated neurological function, motor ability, emotionality, learning, and memory in aged Parkin-deficient mice. The behavioral profile of Parkin-deficient mice on a B6;129S4 genetic background was strikingly similar to that of control mice, and most differences were not reproducible by using coisogenic mice on a 129S4 genetic background. Moreover, catecholamine levels in the striatum, olfactory bulb, and spinal cord of Parkin-deficient mice were normal. In contrast to previous studies using independently generated Parkin-deficient mice, we found no evidence for nigrostriatal, cognitive, or noradrenergic dysfunction. Understanding why Parkin-deficient mice do not exhibit robust signs of parkinsonism could advance knowledge and treatment of PD.
Collapse
Affiliation(s)
- Francisco A Perez
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|