1
|
Chakraborty A, Halder S, Kishore P, Saha D, Saha S, Sikder K, Basu A. The structure-function analysis of Obg-like GTPase proteins along the evolutionary tree from bacteria to humans. Genes Cells 2022; 27:469-481. [PMID: 35610748 PMCID: PMC9545696 DOI: 10.1111/gtc.12942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Obg proteins belong to P-loop guanine triphosphatase (GTPase) that are conserved from bacteria to humans. Like other GTPases, Obg cycles between guanine triphosphate (GTP) bound "on" state and guanine diphosphate (GDP)-bound "off" state, thereby controlling various cellular processes. Different members of this group have unique structural characteristics; a conserved glycine-rich N-terminal domain known as obg fold, a central conserved nucleotide binding domain, and a less conserved C-terminal domain of other functions. Obg is a ribosome dependent GTPase helps in ribosome maturation by interacting with several proteins of the 50S subunit of the ribosome. Obg proteins have been widely considered as a regulator of cellular functions, helping in DNA replication, cell division. Apart from that, this protein also takes part in various stress adaptation pathways like a stringent response, sporulation, and general stress response. In this particular review, the structural features of ObgE have been highlighted and how the structure plays important role in interacting with regulators like GTP, ppGpp that are crucial for executing biological function has been orchestrated. In particular, we believe that Obg-like proteins can provide a link between different global pathways that are necessary for fine-tuning cellular processes to maintain the cellular energy status.
Collapse
Affiliation(s)
- Asmita Chakraborty
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sheta Halder
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Purvi Kishore
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Disha Saha
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Sujata Saha
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Kunal Sikder
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
2
|
Chen J, Wang L, Jin X, Wan J, Zhang L, Je BI, Zhao K, Kong F, Huang J, Tian M. Oryza sativa ObgC1 Acts as a Key Regulator of DNA Replication and Ribosome Biogenesis in Chloroplast Nucleoids. RICE (NEW YORK, N.Y.) 2021; 14:65. [PMID: 34251486 PMCID: PMC8275814 DOI: 10.1186/s12284-021-00498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Spo0B-associated GTP-binding protein (Obg) GTPase, has diverse and important functions in bacteria, including morphological development, DNA replication and ribosome maturation. Homologs of the Bacillus subtilis Obg have been also found in chloroplast of Oryza sativa, but their primary roles remain unknown. RESULTS We clarify that OsObgC1 is a functional homolog of AtObgC. The mutant obgc1-d1 exhibited hypersensitivity to the DNA replication inhibitor hydroxyurea. Quantitative PCR results showed that the ratio of chloroplast DNA to nuclear DNA in the mutants was higher than that of the wild-type plants. After DAPI staining, OsObgC1 mutants showed abnormal nucleoid architectures. The specific punctate staining pattern of OsObgC1-GFP signal suggests that this protein localizes to the chloroplast nucleoids. Furthermore, loss-of-function mutation in OsObgC1 led to a severe suppression of protein biosynthesis by affecting plastid rRNA processing. It was also demonstrated through rRNA profiling that plastid rRNA processing was decreased in obgc1-d mutants, which resulted in impaired ribosome biogenesis. The sucrose density gradient profiles revealed a defective chloroplast ribosome maturation of obgc1-d1 mutants. CONCLUSION Our findings here indicate that the OsObgC1 retains the evolutionarily biological conserved roles of prokaryotic Obg, which acts as a signaling hub that regulates DNA replication and ribosome biogenesis in chloroplast nucleoids.
Collapse
Affiliation(s)
- Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Li Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaowan Jin
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Wan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lang Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Byoung Il Je
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China
| | - Ke Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanlei Kong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Huang
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China.
| | - Mengliang Tian
- Institute for New Rural Development, Sichuan Agricultural University, Yaan, 625000, China.
| |
Collapse
|
3
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
4
|
Ekka MK, Meena LS. Essential biochemical, biophysical and computational inputs on efficient functioning of Mycobacterium tuberculosis H 37Rv FtsY. Int J Biol Macromol 2021; 171:59-73. [PMID: 33412199 DOI: 10.1016/j.ijbiomac.2020.12.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis H37Rv) utilizes the signal recognition particle pathway (SRP pathway) system for secretion of various proteins from ribosomes to the extracellular surface which plays an important role in the machinery running inside the bacterium. This system comprises of three major components FtsY, FfH and 4.5S rRNA. This manuscript highlights essential factors responsible for the optimized enzymatic activity of FtsY. Kinetic parameters include Vmax and Km for the hydrolysis of GTP by ftsY which were 20.25±5.16 μM/min/mg and 39.95±7.7 μM respectively. kcat and catalytic efficiency of the reaction were 0.012±0.003 s-1 and 0.00047±0.0001 μM/s-1 respectively. These values were affected upon changing the standard conditions. Cations (Mg2+ and Mn2+) play important role in FtsY enzymatic activity as increasing Mg2+ decrease the activity. Mn2+on the other hand is required at higher concentration around 60 mM for carrying optimum GTPase activity. FtsY is hydrolyzing ATP and GDP as well and GDP acts as an inhibitor of the reaction. MD simulation shows effective binding and stabilization of the FtsY complexed structure with GTP, GDP and ATP. Mutational analysis was done at two important residues of GTP binding motif of FtsY, namely, GXXXXGK (K236) and DXXG (D367) and showed that these mutations significantly decrease FtsY GTPase activity. FtsY is comprised of α helices, but this structural pattern was shown to change with increasing concentrations of GTP and ATP which symbolize that these ligands cause significant conformational change by variating the secondary structure to transduce signals required by downstream effectors. This binding favors the functional stabilization of FtsY by destabilization of α-helix integrity. Revealing the hidden aspects of the functioning of FtsY might be an essential part for the understanding of the SRP pathway which is one of the important contributors of M. tuberculosis virulence.
Collapse
Affiliation(s)
- Mary Krishna Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
5
|
Bennison DJ, Irving SE, Corrigan RM. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells 2019; 8:cells8111313. [PMID: 31653044 PMCID: PMC6912228 DOI: 10.3390/cells8111313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.
Collapse
Affiliation(s)
- Daniel J Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
6
|
Rice TSV3 Encoding Obg-Like GTPase Protein Is Essential for Chloroplast Development During the Early Leaf Stage Under Cold Stress. G3-GENES GENOMES GENETICS 2018; 8:253-263. [PMID: 29162684 PMCID: PMC5765353 DOI: 10.1534/g3.117.300249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Spo0B-associated GTP-binding (Obg) proteins are essential for the viability of nearly all bacteria. However, the detailed roles of Obg proteins in higher plants have not yet been elucidated. In this study, we identified a novel rice (Oryza sativa L.) thermo-sensitive virescent mutant (tsv3) that displayed an albino phenotype at 20° before the three-leaf stage while being a normal green at 32° or even at 20° after the four-leaf stage. The mutant phenotype was consistent with altered chlorophyll content and chloroplast structure in leaves. Map-based cloning and complementation experiments showed that TSV3 encoded a small GTP-binding protein. Subcellular localization studies revealed that TSV3 was localized to the chloroplasts. Expression of TSV3 was high in leaves and weak or undetectable in other tissues, suggesting a tissue-specific expression of TSV3 In the tsv3 mutant, expression levels of genes associated with the biogenesis of the chloroplast ribosome 50S subunit were severely decreased at the three-leaf stage under cold stress (20°), but could be recovered to normal levels at a higher temperature (32°). These observations suggest that the rice nuclear-encoded TSV3 plays important roles in chloroplast development at the early leaf stage under cold stress.
Collapse
|
7
|
Kumar V, Singh HN, Tomar AK, Dantham S, Yadav S. Searching new targets to counter drug resistance – GTPase-Obg mRNA expression analysis in Mycobacterium under stress and in silico docking with GTPase inhibitors. J Biomol Struct Dyn 2016; 35:1804-1812. [DOI: 10.1080/07391102.2016.1195284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Vikrant Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
8
|
Zielke RA, Wierzbicki IH, Baarda BI, Sikora AE. The Neisseria gonorrhoeae Obg protein is an essential ribosome-associated GTPase and a potential drug target. BMC Microbiol 2015; 15:129. [PMID: 26122105 PMCID: PMC4487204 DOI: 10.1186/s12866-015-0453-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria gonorrhoeae (GC) is a Gram-negative pathogen that most commonly infects mucosal surfaces, causing sexually transmitted urethritis in men and endocervicitis in women. Serious complications associated with these infections are frequent and include pelvic inflammatory disease, ectopic pregnancy, and infertility. The incidence of gonorrhea cases remains high globally while antibiotic treatment options, the sole counter measures against gonorrhea, are declining due to the remarkable ability of GC to acquire resistance. Evaluating of potential drug targets is essential to provide opportunities for developing antimicrobials with new mechanisms of action. We propose the GC Obg protein, belonging to the Obg/CgtA GTPase subfamily, as a potential target for the development of therapeutic interventions against gonorrhea, and in this study perform its initial functional and biochemical characterization. Results We report that NGO1990 encodes Obg protein, which is an essential factor for GC viability, associates predominantly with the large 50S ribosomal subunit, and is stably expressed under conditions relevant to infection of the human host. The anti-Obg antisera cross-reacts with a panel of contemporary GC clinical isolates, demonstrating the ubiquitous nature of Obg. The cellular levels of Obg reach a maximum in the early logarithmic phase and remain constant throughout bacterial growth. The in vitro binding and hydrolysis of the fluorescent guanine nucleotide analogs mant-GTP and mant-GDP by recombinant wild type and T192AT193A mutated variants of Obg are also assessed. Conclusions Characterization of the GC Obg at the molecular and functional levels presented herein may facilitate the future targeting of this protein with small molecule inhibitors and the evaluation of identified lead compounds for bactericidal activity against GC and other drug-resistant bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0453-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Igor H Wierzbicki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Benjamin I Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| |
Collapse
|
9
|
Pérez-Arellano I, Spínola-Amilibia M, Bravo J. Human Drg1 is a potassium-dependent GTPase enhanced by Lerepo4. FEBS J 2013; 280:3647-57. [PMID: 23711155 DOI: 10.1111/febs.12356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
Human Drg1, a guanine nucleotide binding protein conserved in archaea and eukaryotes, is regulated by Lerepo4. Together they form a complex which interacts with translating ribosomes. Here we have purified and characterized the GTPase activity of Drg1 and three variants, a shortened mutant depleted of the TGS domain, a phosphomimicking mutant and a construct with the two combined mutations. Our data reveal that potassium strongly stimulates the GTPase activity, without changing the monomeric status of Drg1 and that this activity is notably reduced in the mutants. The nature of Lerepo4 association has also been investigated. Dissecting the role of the different domains revealed that Dfrp domain is the sole responsible for the Drg1 increase in thermal stability and the four fold stimulation over its catalytic activity. Lerepo4 action leaves Drg1 affinity for nucleotides unaffected, feasibly favoring a switch I reorientation, mainly via the TGS domain. Drg1 displayed a high temperature optimum of activity at 42°C, suggesting the ability of being active under possible heat stress conditions.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | |
Collapse
|
10
|
Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 2013; 40:207-24. [PMID: 23537324 DOI: 10.3109/1040841x.2013.776510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.
Collapse
Affiliation(s)
- Cyrielle Kint
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven , Kasteelpark Arenberg 20, 3001 Heverlee , Kasteelpark Arenberg 20, 3001 Heverlee and
| | | | | | | | | |
Collapse
|
11
|
Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD. Functional characterization of ObgC in ribosome biogenesis during chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:122-34. [PMID: 22380942 DOI: 10.1111/j.1365-313x.2012.04976.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.
Collapse
Affiliation(s)
- Woo Young Bang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology-GNTECH, Jinju 660-758, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Karpinets T, Greenwood D, Pogribny I, Samatova N. Bacterial stationary-state mutagenesis and Mammalian tumorigenesis as stress-induced cellular adaptations and the role of epigenetics. Curr Genomics 2011; 7:481-96. [PMID: 18369407 DOI: 10.2174/138920206779315764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/11/2006] [Accepted: 11/23/2006] [Indexed: 01/16/2023] Open
Abstract
Mechanisms of cellular adaptation may have some commonalities across different organisms. Revealing these common mechanisms may provide insight in the organismal level of adaptation and suggest solutions to important problems related to the adaptation. An increased rate of mutations, referred as the mutator phenotype, and beneficial nature of these mutations are common features of the bacterial stationary-state mutagenesis and of the tumorigenic transformations in mammalian cells. We argue that these commonalities of mammalian and bacterial cells result from their stress-induced adaptation that may be described in terms of a common model. Specifically, in both organisms the mutator phenotype is activated in a subpopulation of proliferating stressed cells as a strategy to survival. This strategy is an alternative to other survival strategies, such as senescence and programmed cell death, which are also activated in the stressed cells by different subpopulations. Sustained stress-related proliferative signalling and epigenetic mechanisms play a decisive role in the choice of the mutator phenotype survival strategy in the cells. They reprogram cellular functions by epigenetic silencing of cell-cycle inhibitors, DNA repair, programmed cell death, and by activation of repetitive DNA elements. This reprogramming leads to the mutator phenotype that is implemented by error-prone cell divisions with the involvement of Y family polymerases. Studies supporting the proposed model of stress-induced cellular adaptation are discussed. Cellular mechanisms involved in the bacterial stress-induced adaptation are considered in more detail.
Collapse
Affiliation(s)
- Tv Karpinets
- Computational Biology Institute, Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6164, Oak Ridge, TN 37831, USA
| | | | | | | |
Collapse
|
13
|
Bang WY, Hata A, Jeong IS, Umeda T, Masuda T, Chen J, Yoko I, Suwastika IN, Kim DW, Im CH, Lee BH, Lee Y, Lee KW, Shiina T, Bahk JD. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. PLANT MOLECULAR BIOLOGY 2009; 71:379-90. [PMID: 19636801 DOI: 10.1007/s11103-009-9529-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 05/21/2023]
Abstract
Obg is a ribosome-associated GTPase essential for bacterial viability and is conserved in most organisms, from bacteria to eukaryotes. Obg is also expressed in plants, which predicts an important role for this molecule in plant viability; however, the functions of the plant Obg homologs have not been reported. Here, we first identified Arabidopsis AtObgC as a plant chloroplast-targeting Obg and elucidated its molecular biological and physiological properties. AtObgC encodes a plant-specific Obg GTPase that contains an N-terminal region for chloroplast targeting and has intrinsic GTP hydrolysis activity. A targeting assay using a few AtObgC N-terminal truncation mutants revealed that AtObgC localizes to chloroplasts and its transit peptide consists of more than 50 amino acid residues. Interestingly, GFP-fused full-length AtObgC exhibited a punctate staining pattern in chloroplasts of Arabidopsis protoplasts, which suggests a dimerization or multimerization of AtObgC. Moreover, its Obg fold was indispensable for the generation of the punctate staining pattern, and thus, was supposed to be important for such oligomerization of AtObgC by mediating the protein-protein interaction. In addition, the T-DNA insertion AtObgC null mutant exhibited an embryonic lethal phenotype that disturbed the early stage of embryogenesis. Altogether, our results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplast protein synthesis.
Collapse
Affiliation(s)
- Woo Young Bang
- Division of Applied Life Sciences (BK21 and EB-NCRC), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
When DNA replication and protein synthesis come together. Trends Biochem Sci 2009; 34:429-34. [PMID: 19729310 DOI: 10.1016/j.tibs.2009.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 11/20/2022]
Abstract
In all organisms, DNA and protein are synthesized by dedicated, but unrelated, machineries that move along distinct templates with no apparent coordination. Therefore, connections between DNA replication and translation are a priori unexpected. However, recent findings support the existence of such connections throughout the three domains of life. In particular, we recently identified in archaeal genomes a conserved association between genes encoding DNA replication and ribosome-related proteins which all have eukaryotic homologs. We believe that this gene organization is biologically relevant and, moreover, that it suggests the existence of a mechanism coupling DNA replication and translation in Archaea and Eukarya.
Collapse
|
15
|
Koller-Eichhorn R, Marquardt T, Gail R, Wittinghofer A, Kostrewa D, Kutay U, Kambach C. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem 2007; 282:19928-37. [PMID: 17430889 DOI: 10.1074/jbc.m700541200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purine nucleotide-binding proteins build the large family of P-loop GTPases and related ATPases, which perform essential functions in all kingdoms of life. The Obg family comprises a group of ancient GTPases belonging to the TRAFAC (for translation factors) class and can be subdivided into several distinct protein subfamilies. The founding member of one of these subfamilies is the bacterial P-loop NTPase YchF, which had so far been assumed to act as GTPase. We have biochemically characterized the human homologue of YchF and found that it binds and hydrolyzes ATP more efficiently than GTP. For this reason, we have termed the protein hOLA1, for human Obg-like ATPase 1. Further biochemical characterization of YchF proteins from different species revealed that ATPase activity is a general but previously missed feature of the YchF subfamily of Obg-like GTPases. To explain ATP specificity of hOLA1, we have solved the x-ray structure of hOLA1 bound to the nonhydrolyzable ATP analogue AMPPCP. Our structural data help to explain the altered nucleotide specificity of YchF homologues and identify the Ola1/YchF subfamily of the Obg-related NTPases as an exceptional example of a single protein subfamily, which has evolved altered nucleotide specificity within a distinct protein family of GTPases.
Collapse
|
16
|
Sikora AE, Zielke R, Wegrzyn A, Wegrzyn G. DNA replication defect in the Escherichia coli cgtA(ts) mutant arising from reduced DnaA levels. Arch Microbiol 2006; 185:340-7. [PMID: 16518617 DOI: 10.1007/s00203-006-0099-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/27/2006] [Accepted: 02/13/2006] [Indexed: 11/29/2022]
Abstract
In Escherichia coli and other bacteria, the ribosome-associated CgtA GTP-binding protein plays a critical role in many basic cellular processes, including the control of DNA replication and/or segregation. However, the mechanism of this control is largely unknown. Here we report that ectopic expression of the dnaA gene partially restored both early growth in liquid medium and DNA synthesis defects of the cgtA(ts) mutant. Amounts of DnaA protein in the cgtA(ts) mutant incubated at elevated (42 degrees C) temperature were significantly lower relative to wild-type bacteria. Both level of dnaA mRNA and transcriptional activity of the dnaA promoter-lacZ fusion were decreased in the CgtA-deficient cells. The effects of ectopic expression of dnaA were specific as analogous expression of another gene coding for a replication regulator, seqA, had no significant changes in growth and DNA synthesis in the cgtA mutant. Thus, it appears that the DNA replication defect in this mutant is a consequence of reduced DnaA levels.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- Department of Molecular Biology, University of Gdansk, Kładki 24, 80-822, Gdansk, Poland
| | | | | | | |
Collapse
|