1
|
Levin M. The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine. Bioessays 2025; 47:e202400196. [PMID: 39623868 DOI: 10.1002/bies.202400196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material-from molecular to organismal scales-reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Nguyen NM, Farge E. Mechanical induction in metazoan development and evolution: from earliest multi-cellular organisms to modern animal embryos. Nat Commun 2024; 15:10695. [PMID: 39702750 DOI: 10.1038/s41467-024-55100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
The development and origin of animal body forms have long been intensely explored, from the analysis of morphological traits during antiquity to Newtonian mechanical conceptions of morphogenesis. Advent of molecular biology then focused most interests on the biochemical patterning and genetic regulation of embryonic development. Today, a view is arising of development of multicellular living forms as a phenomenon emerging from non-hierarchical, reciprocal mechanical and mechanotransductive interactions between biochemical patterning and biomechanical morphogenesis. Here we discuss the nature of these processes and put forward findings on how early biochemical and biomechanical patterning of metazoans may have emerged from a primitive behavioural mechanotransducive feeding response to marine environment which might have initiated the development of first animal multicellular organisms.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Mechanics and Genetics of Embryonic Development group, Institut Curie, Centre OCAV PSL Research University, Sorbonne University, CNRS UMR168 Physics of Cells and Cancer, Inserm, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic Development group, Institut Curie, Centre OCAV PSL Research University, Sorbonne University, CNRS UMR168 Physics of Cells and Cancer, Inserm, 11 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
3
|
Yared G, Ghazal K, Younis A, Alakrah W, Massaad C, Hajj KA, El Hajjar C, Matar M. Postaxial polydactyly: A case report highlighting genetic context, epidemiological trends, and management options. SAGE Open Med Case Rep 2024; 12:2050313X241282215. [PMID: 39314219 PMCID: PMC11418334 DOI: 10.1177/2050313x241282215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
This case report examines a newborn with bilateral postaxial polydactyly type B, delivered by a 42-year-old mother with a history of third-degree consanguinity. The mother, having had no prior live births and one abortion, presented at 39 weeks gestation. The absence of prenatal care is noted, with its potential impact on prenatal diagnosis not assessed. The newborn, a healthy girl, weighed 3400 g with an Apgar score of 9/10. Radiographic and physical examination revealed vestigial sixth digits with rudimentary phalanges, influencing the surgical approach. This report underscores the importance of genetic counseling in cases of consanguinity and illustrates the multidisciplinary strategy necessary for managing polydactyly, from surgical considerations to genetic evaluation.
Collapse
Affiliation(s)
- Georges Yared
- Department of Obstetrics and Gynecology, Lebanese American University, The Gilbert and Rose-Marie Chagoury School of Medicine, Beirut, Lebanon
| | - Kariman Ghazal
- Department of Obstetrics and Gynecology, Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Ali Younis
- Department of Obstetrics and Gynecology, Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Wardah Alakrah
- Department of Obstetrics and Gynecology, Lebanese American University, The Gilbert and Rose-Marie Chagoury School of Medicine, Beirut, Lebanon
| | | | - Khodor Al Hajj
- Department of Obstetrics and Gynecology, Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Charlotte El Hajjar
- Department of Obstetrics and Gynecology, Lebanese American University, Faculty of Medical Sciences, Beirut, Lebanon
| | - Maroun Matar
- Department of Pediatrics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
4
|
Sudderick ZR, Glover JD. Periodic pattern formation during embryonic development. Biochem Soc Trans 2024; 52:75-88. [PMID: 38288903 PMCID: PMC10903485 DOI: 10.1042/bst20230197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
During embryonic development many organs and structures require the formation of series of repeating elements known as periodic patterns. Ranging from the digits of the limb to the feathers of the avian skin, the correct formation of these embryonic patterns is essential for the future form and function of these tissues. However, the mechanisms that produce these patterns are not fully understood due to the existence of several modes of pattern generation which often differ between organs and species. Here, we review the current state of the field and provide a perspective on future approaches to studying this fundamental process of embryonic development.
Collapse
Affiliation(s)
- Zoe R. Sudderick
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| | - James D. Glover
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
5
|
Grall E, Feregrino C, Fischer S, De Courten A, Sacher F, Hiscock TW, Tschopp P. Self-organized BMP signaling dynamics underlie the development and evolution of digit segmentation patterns in birds and mammals. Proc Natl Acad Sci U S A 2024; 121:e2304470121. [PMID: 38175868 PMCID: PMC10786279 DOI: 10.1073/pnas.2304470121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024] Open
Abstract
Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.
Collapse
Affiliation(s)
- Emmanuelle Grall
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Aline De Courten
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Fabio Sacher
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Tom W. Hiscock
- Institute of Medical Sciences, University of Aberdeen, AberdeenAB25 2ZD, Scotland, United Kingdom
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| |
Collapse
|
6
|
Ono SF, Cordeiro IR, Kishida O, Ochi H, Tanaka M. Air-breathing behavior underlies the cell death in limbs of Rana pirica tadpoles. ZOOLOGICAL LETTERS 2023; 9:2. [PMID: 36624534 PMCID: PMC9830891 DOI: 10.1186/s40851-022-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Amphibians shape their limbs by differential outgrowth of digits and interdigital regions. In contrast, amniotes employ cell death, an additional developmental system, to determine the final shape of limbs. Previous work has shown that high oxygen availability is correlated with the induction of cell death in developing limbs. Given the diversity of life histories of amphibians, it is conceivable that some amphibians are exposed to a high-oxygen environment during the tadpole phase and exhibit cell death in their limbs. Here, we examined whether air-breathing behavior underlies the cell death in limbs of aquatic tadpoles of the frog species Rana pirica. Our experimental approach revealed that R. pirica tadpoles exhibit cell death in their limbs that is likely to be induced by oxidative stress associated with their frequent air-breathing behavior.
Collapse
Affiliation(s)
- Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido, 053-0035, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
7
|
Cavallo A, Clark MS, Peck LS, Harper EM, Sleight VA. Evolutionary conservation and divergence of the transcriptional regulation of bivalve shell secretion across life-history stages. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221022. [PMID: 36569229 PMCID: PMC9768464 DOI: 10.1098/rsos.221022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Adult molluscs produce shells with diverse morphologies and ornamentations, different colour patterns and microstructures. The larval shell, however, is a phenotypically more conserved structure. How do developmental and evolutionary processes generate varying diversity at different life-history stages within a species? Using live imaging, histology, scanning electron microscopy and transcriptomic profiling, we have described shell development in a heteroconchian bivalve, the Antarctic clam, Laternula elliptica, and compared it to adult shell secretion processes in the same species. Adult downstream shell genes, such as those encoding extracellular matrix proteins and biomineralization enzymes, were largely not expressed during shell development. Instead, a development-specific downstream gene repertoire was expressed. Upstream regulatory genes such as transcription factors and signalling molecules were largely conserved between developmental and adult shell secretion. Comparing heteroconchian data with recently reported pteriomorphian larval shell development data suggests that, despite being phenotypically more conserved, the downstream effectors constituting the larval shell 'tool-kit' may be as diverse as that of adults. Overall, our new data suggest that a larval shell formed using development-specific downstream effector genes is a conserved and ancestral feature of the bivalve lineage, and possibly more broadly across the molluscs.
Collapse
Affiliation(s)
- Alessandro Cavallo
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Melody S. Clark
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Lloyd S. Peck
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Elizabeth M. Harper
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victoria A. Sleight
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|
8
|
Abstract
Wound healing is an aspect of normal physiology that we all take for granted until it goes wrong, such as, for example, the scarring that results from a severe burn, or those patients who suffer from debilitating chronic wounds that fail to heal. Ever since wound repair research began as a discipline, clinicians and basic scientists have collaborated to try and understand the cell and molecular mechanisms that underpin healthy repair in the hope that this will reveal clues for the therapeutic treatment of pathological healing. In recent decades mathematicians and physicists have begun to join in with this important challenge. Here we describe examples of how mathematical modeling married to biological experimentation has provided insights that biology alone could not fathom. To date, these studies have largely focused on wound re-epithelialization and inflammation, but we also discuss other components of wound healing that might be ripe for similar interdisciplinary approaches.
Collapse
Affiliation(s)
- Jake Turley
- School of Mathematics, Fry Building, University of Bristol, Bristol BS8 1UG, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Isaac V. Chenchiah
- School of Mathematics, Fry Building, University of Bristol, Bristol BS8 1UG, UK
| | | | - Helen Weavers
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Lacalli TC. Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations. Front Cell Dev Biol 2022; 10:871950. [PMID: 35592249 PMCID: PMC9111979 DOI: 10.3389/fcell.2022.871950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
This is a brief account of Turing's ideas on biological pattern and the events that led to their wider acceptance by biologists as a valid way to investigate developmental pattern, and of the value of theory more generally in biology. Periodic patterns have played a key role in this process, especially 2D arrays of oriented stripes, which proved a disappointment in theoretical terms in the case of Drosophila segmentation, but a boost to theory as applied to skin patterns in fish and model chemical reactions. The concept of "order from fluctuations" is a key component of Turing's theory, wherein pattern arises by selective amplification of spatial components concealed in the random disorder of molecular and/or cellular processes. For biological examples, a crucial point from an analytical standpoint is knowing the nature of the fluctuations, where the amplifier resides, and the timescale over which selective amplification occurs. The answer clarifies the difference between "inelegant" examples such as Drosophila segmentation, which is perhaps better understood as a programmatic assembly process, and "elegant" ones expressible in equations like Turing's: that the fluctuations and selection process occur predominantly in evolutionary time for the former, but in real time for the latter, and likewise for error suppression, which for Drosophila is historical, in being lodged firmly in past evolutionary events. The prospects for a further extension of Turing's ideas to the complexities of brain development and consciousness is discussed, where a case can be made that it could well be in neuroscience that his ideas find their most important application.
Collapse
|
10
|
Parada C, Banavar SP, Khalilian P, Rigaud S, Michaut A, Liu Y, Joshy DM, Campàs O, Gros J. Mechanical feedback defines organizing centers to drive digit emergence. Dev Cell 2022; 57:854-866.e6. [PMID: 35413235 DOI: 10.1016/j.devcel.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
During embryonic development, digits gradually emerge in a periodic pattern. Although genetic evidence indicates that digit formation results from a self-organizing process, the underlying mechanisms are still unclear. Here, we find that convergent-extension tissue flows driven by active stresses underlie digit formation. These active stresses simultaneously shape cartilage condensations and lead to the emergence of a compressive stress region that promotes high activin/p-SMAD/SOX9 expression, thereby defining digit-organizing centers via a mechanical feedback. In Wnt5a mutants, such mechanical feedback is disrupted due to the loss of active stresses, organizing centers do not emerge, and digit formation is precluded. Thus, digit emergence does not result solely from molecular interactions, as was previously thought, but requires a mechanical feedback that ensures continuous coupling between phalanx specification and elongation. Our work, which links mechanical and molecular signals, provides a mechanistic context for the emergence of organizing centers that may underlie various developmental processes.
Collapse
Affiliation(s)
- Carolina Parada
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA 93106-5070, USA
| | - Parisa Khalilian
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Stephane Rigaud
- Image Analysis Hub, C2RT, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Arthur Michaut
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
| | - Dennis Manjaly Joshy
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, USA; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
11
|
de Bakker MAG, van der Vos W, de Jager K, Chung WY, Fowler DA, Dondorp E, Spiekman SNF, Chew KY, Xie B, Jiménez R, Bickelmann C, Kuratani S, Blazek R, Kondrashov P, Renfree MB, Richardson MK. Selection on phalanx development in the evolution of the bird wing. Mol Biol Evol 2021; 38:4222-4237. [PMID: 34164688 PMCID: PMC8476175 DOI: 10.1093/molbev/msab150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/03/2021] [Indexed: 11/12/2022] Open
Abstract
The frameshift hypothesis is a widely-accepted model of bird wing evolution. This hypothesis postulates a shift in positional values, or molecular-developmental identity, that caused a change in digit phenotype. The hypothesis synthesised developmental and palaeontological data on wing digit homology. The 'most anterior digit' (MAD) hypothesis presents an alternative view based on changes in transcriptional regulation in the limb. The molecular evidence for both hypotheses is that the most anterior digit expresses Hoxd13 but not Hoxd11 and Hoxd12. This digit I 'signature' is thought to characterise all amniotes. Here, we studied Hoxd expression patterns in a phylogenetic sample of 18 amniotes. Instead of a conserved molecular signature in digit I, we find wide variation of Hoxd11, Hoxd12 and Hoxd13 expression in digit I. Patterns of apoptosis, and Sox9 expression, a marker of the phalanx-forming region, suggest that phalanges were lost from wing digit IV because of early arrest of the phalanx-forming region followed by cell death. Finally, we show that multiple amniote lineages lost phalanges with no frameshift. Our findings suggest that the bird wing evolved by targeted loss of phalanges under selection. Consistent with our view, some recent phylogenies based on dinosaur fossils eliminate the need to postulate a frameshift in the first place. We suggest that the phenotype of the Archaeopteryx lithographica wing is also consistent with phalanx loss. More broadly, our results support a gradualist model of evolution based on tinkering with developmental gene expression.
Collapse
Affiliation(s)
- Merijn A G de Bakker
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Wessel van der Vos
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Kaylah de Jager
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Wing Yu Chung
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Donald A Fowler
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Esther Dondorp
- Naturalis Biodiversity Center, 2300 RA Leiden, PO Box 9517, The Netherlands
| | - Stephan N F Spiekman
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Keng Yih Chew
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Bing Xie
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Rafael Jiménez
- Departamento de Genética, Universidad de Granada, Lab 127 Centro de Investigación Biomédica, Avenida del Conocimiento S/N, 1810018016 Armilla, Granada, Spain
| | - Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,RIKEN Cluster for Pioneering Research, Kobe, Japan
| | - Radim Blazek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna, 603 65, Czech Republic 8, Brno
| | - Peter Kondrashov
- Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, 63501, MO USA)
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Michael K Richardson
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| |
Collapse
|
12
|
Fontanarrosa G, Abdala V, Dos Santos DA. Morphospace analysis leads to an evo-devo model of digit patterning. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:341-351. [PMID: 33476480 DOI: 10.1002/jez.b.23026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022]
Abstract
Biological forms occupy a constrained portion of theoretical morphospaces. Developmental models accounting for empirical morphospaces are necessary to achieve a better understanding of this phenomenon. We analyzed the phalangeal formulas (PFs) in lizards and relatives' hands by comparing them with a set of simulated PFs that compose a theoretical morphospace. We detected that: (1) the empirical morphospace is severely limited in size, (2) the PFs comply with two properties of phalangeal count per digit, namely the ordering rule (DI ≤ DII ≤ DIII ≤ DIV ≥ DV), and the contiguity relationship (neighbor digits differ on average in one phalanx), (3) the totality of the PFs can be categorized into four categories of hands aligned along a feasibility gradient. We also reconstructed the evolution of PFs and found a stepwise trajectory from the plesiomorphic PF towards reduced conditions. Finally, we propose a developmental model as the generative mechanism behind the PFs. It is consistent with the bulk of evidence managed and involves an ordered digit primordia initialization timed with periodic signals of joint formation coming from digit tips. Our approach is also useful to address the study of other meristic sequences in nature such as dental, floral, and branchial formulas.
Collapse
Affiliation(s)
- Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Daniel A Dos Santos
- Instituto de Biodiversidad Neotropical, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
13
|
Wnt/β-catenin Signaling in Tissue Self-Organization. Genes (Basel) 2020; 11:genes11080939. [PMID: 32823838 PMCID: PMC7464740 DOI: 10.3390/genes11080939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Across metazoans, animal body structures and tissues exist in robust patterns that arise seemingly out of stochasticity of a few early cells in the embryo. These patterns ensure proper tissue form and function during early embryogenesis, development, homeostasis, and regeneration. Fundamental questions are how these patterns are generated and maintained during tissue homeostasis and regeneration. Though fascinating scientists for generations, these ideas remain poorly understood. Today, it is apparent that the Wnt/β-catenin pathway plays a central role in tissue patterning. Wnt proteins are small diffusible morphogens which are essential for cell type specification and patterning of tissues. In this review, we highlight several mechanisms described where the spatial properties of Wnt/β-catenin signaling are controlled, allowing them to work in combination with other diffusible molecules to control tissue patterning. We discuss examples of this self-patterning behavior during development and adult tissues' maintenance. The combination of new physiological culture systems, mathematical approaches, and synthetic biology will continue to fuel discoveries about how tissues are patterned. These insights are critical for understanding the intricate interplay of core patterning signals and how they become disrupted in disease.
Collapse
|
14
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Hockings N, Howard D. New Biological Morphogenetic Methods for Evolutionary Design of Robot Bodies. Front Bioeng Biotechnol 2020; 8:621. [PMID: 32637404 PMCID: PMC7317032 DOI: 10.3389/fbioe.2020.00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
We present some currently unused morphogenetic mechanisms from evolutionary biology and guidelines for transfer to evolutionary robotics. (1) DNA patterns providing mutation of mutability, lead to canalization of evolvable bauplans, via kin selection. (2) Morphogenetic mechanisms (i) Epigenetic cell lines provide functional cell types, and identification of cell descent. (ii) Local anatomical coordinates based on diffusion of morphogens, facilitate evolvable genetic parameterizations of complex phenotypes (iii) Remodeling in response to mechanical forces facilitates robust production of well-integrated phenotypes of greater complexity than the genome. An approach is proposed for the tractable application of mutation-of-mutability and morphogenetic mechanisms in evolutionary robotics. The purpose of these methods, is to facilitate production of robot mechanisms of the subtlety, efficiency, and efficacy of the musculoskeletal and dermal systems of animals.
Collapse
Affiliation(s)
- Nick Hockings
- Robotics and Autonomous Systems Group, Cyber-Physical Systems, Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Pullenvale, QLD, Australia
| | | |
Collapse
|
16
|
Scoones JC, Hiscock TW. A dot-stripe Turing model of joint patterning in the tetrapod limb. Development 2020; 147:dev183699. [PMID: 32127348 PMCID: PMC7174842 DOI: 10.1242/dev.183699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 01/11/2023]
Abstract
Iterative joints are a hallmark of the tetrapod limb, and their positioning is a key step during limb development. Although the molecular regulation of joint formation is well studied, it remains unclear what controls the location, number and orientation (i.e. the pattern) of joints within each digit. Here, we propose the dot-stripe mechanism for joint patterning, comprising two coupled Turing systems inspired by published gene expression patterns. Our model can explain normal joint morphology in wild-type limbs, hyperphalangy in cetacean flippers, mutant phenotypes with misoriented joints and suggests a reinterpretation of the polydactylous Ichthyosaur fins as a polygonal joint lattice. By formulating a generic dot-stripe model, describing joint patterns rather than molecular joint markers, we demonstrate that the insights from the model should apply regardless of the biological specifics of the underlying mechanism, thus providing a unifying framework to interrogate joint patterning in the tetrapod limb.
Collapse
Affiliation(s)
| | - Tom W Hiscock
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| |
Collapse
|
17
|
Ros MA, Schoenwolf GC. In memory of John F. Fallon. Dev Dyn 2020; 249:430-440. [PMID: 32162410 DOI: 10.1002/dvdy.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Maria A Ros
- CSIC, Instituto de Biomedicina y Biotecnologia de Cantabria (CSIC-UC-SODERCAN) Santander, Spain
| | - Gary C Schoenwolf
- Neurobiology and Anatomy, The University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Kashgari G, Meinecke L, Gordon W, Ruiz B, Yang J, Ma AL, Xie Y, Ho H, Plikus MV, Nie Q, Jester JV, Andersen B. Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development. Dev Cell 2020; 52:764-778.e4. [PMID: 32109382 DOI: 10.1016/j.devcel.2020.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023]
Abstract
The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation.
Collapse
Affiliation(s)
- Ghaidaa Kashgari
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lina Meinecke
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan Ruiz
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jady Yang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Amy Lan Ma
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yilu Xie
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Hsiang Ho
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - James V Jester
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
19
|
Schweisguth F, Corson F. Self-Organization in Pattern Formation. Dev Cell 2020; 49:659-677. [PMID: 31163171 DOI: 10.1016/j.devcel.2019.05.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/16/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
Abstract
Self-organization is pervasive in development, from symmetry breaking in the early embryo to tissue patterning and morphogenesis. For a few model systems, the underlying molecular and cellular processes are now sufficiently characterized that mathematical models can be confronted with experiments, to explore the dynamics of pattern formation. Here, we review selected systems, ranging from cyanobacteria to mammals, where different forms of cell-cell communication, acting alone or together with positional cues, drive the patterning of cell fates, highlighting the insights that even very simple models can provide as well as the challenges on the path to a predictive understanding of development.
Collapse
Affiliation(s)
- François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology F-75015 Paris, France; CNRS, UMR 3738 F-75015 Paris, France.
| | - Francis Corson
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Sorbonne Université, Université Paris Diderot 75005 Paris, France.
| |
Collapse
|
20
|
Grall E, Tschopp P. A sense of place, many times over ‐ pattern formation and evolution of repetitive morphological structures. Dev Dyn 2019; 249:313-327. [DOI: 10.1002/dvdy.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
|
21
|
Cordeiro IR, Kabashima K, Ochi H, Munakata K, Nishimori C, Laslo M, Hanken J, Tanaka M. Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning. Dev Cell 2019; 50:155-166.e4. [PMID: 31204171 DOI: 10.1016/j.devcel.2019.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 01/04/2023]
Abstract
Amphibians form fingers without webbing by differential growth between digital and interdigital regions. Amniotes, however, employ interdigital cell death (ICD), an additional mechanism that contributes to a greater variation of limb shapes. Here, we investigate the role of environmental oxygen in the evolution of ICD in tetrapods. While cell death is restricted to the limb margin in amphibians with aquatic tadpoles, Eleutherodactylus coqui, a frog with terrestrial-direct-developing eggs, has cell death in the interdigital region. Chicken requires sufficient oxygen and reactive oxygen species to induce cell death, with the oxygen tension profile itself being distinct between the limbs of chicken and Xenopus laevis frogs. Notably, increasing blood vessel density in X. laevis limbs, as well as incubating tadpoles under high oxygen levels, induces ICD. We propose that the oxygen available to terrestrial eggs was an ecological feature crucial for the evolution of ICD, made possible by conserved autopod-patterning mechanisms.
Collapse
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kaori Kabashima
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Keijiro Munakata
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Chika Nishimori
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
22
|
Shahbazi MN, Siggia ED, Zernicka-Goetz M. Self-organization of stem cells into embryos: A window on early mammalian development. Science 2019; 364:948-951. [PMID: 31171690 PMCID: PMC8300856 DOI: 10.1126/science.aax0164] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryonic development is orchestrated by robust and complex regulatory mechanisms acting at different scales of organization. In vivo studies are particularly challenging for mammals after implantation, owing to the small size and inaccessibility of the embryo. The generation of stem cell models of the embryo represents a powerful system with which to dissect this complexity. Control of geometry, modulation of the physical environment, and priming with chemical signals reveal the intrinsic capacity of embryonic stem cells to make patterns. Adding the stem cells for the extraembryonic lineages generates three-dimensional models that are more autonomous from the environment and recapitulate many features of the pre- and postimplantation mouse embryo, including gastrulation. Here, we review the principles of self-organization and how they set cells in motion to create an embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
23
|
Feregrino C, Sacher F, Parnas O, Tschopp P. A single-cell transcriptomic atlas of the developing chicken limb. BMC Genomics 2019; 20:401. [PMID: 31117954 PMCID: PMC6530069 DOI: 10.1186/s12864-019-5802-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Through precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades' worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level. However, to elucidate the dynamic interplay between transcriptional cell type specification programs and pattern formation at its relevant cellular scale, we lack appropriately resolved molecular data at the genome-wide level. Here, making use of droplet-based single-cell RNA-sequencing, we catalogue the developmental emergence of distinct tissue types and their transcriptome dynamics in the distal chicken limb, the so-called autopod, at cellular resolution. RESULTS Using single-cell RNA-sequencing technology, we sequenced a total of 17,628 cells coming from three key developmental stages of chicken autopod patterning. Overall, we identified 23 cell populations with distinct transcriptional profiles. Amongst them were small, albeit essential populations like the apical ectodermal ridge, demonstrating the ability to detect even rare cell types. Moreover, we uncovered the existence of molecularly distinct sub-populations within previously defined compartments of the developing limb, some of which have important signaling functions during autopod pattern formation. Finally, we inferred gene co-expression modules that coincide with distinct tissue types across developmental time, and used them to track patterning-relevant cell populations of the forming digits. CONCLUSIONS We provide a comprehensive functional genomics resource to study the molecular effectors of chicken limb patterning at cellular resolution. Our single-cell transcriptomic atlas captures all major cell populations of the developing autopod, and highlights the transcriptional complexity in many of its components. Finally, integrating our data-set with other single-cell transcriptomics resources will enable researchers to assess molecular similarities in orthologous cell types across the major tetrapod clades, and provide an extensive candidate gene list to functionally test cell-type-specific drivers of limb morphological diversification.
Collapse
Affiliation(s)
| | - Fabio Sacher
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Oren Parnas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Present address: The Concern Foundation Laboratories at the Lautenberg Centre for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120 Jerusalem, Israel
| | - Patrick Tschopp
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
24
|
Kantaputra PN, Carlson BM. Genetic regulatory pathways of split-hand/foot malformation. Clin Genet 2018; 95:132-139. [PMID: 30101460 DOI: 10.1111/cge.13434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Split-hand/foot malformation (SHFM) is caused by mutations in TP63, DLX5, DLX6, FGF8, FGFR1, WNT10B, and BHLHA9. The clinical features of SHFM caused by mutations of these genes are not distinguishable. This implies that in normal situations these SHFM-associated genes share an underlying regulatory pathway that is involved in the development of the central parts of the hands and feet. The mutations in SHFM-related genes lead to dysregulation of Fgf8 in the central portion of the apical ectodermal ridge (AER) and subsequently lead to misexpression of a number of downstream target genes, failure of stratification of the AER, and thus SHFM. Syndactyly of the remaining digits is most likely the effects of dysregulation of Fgf-Bmp-Msx signaling on apoptotic cell death. Loss of digit identity in SHFM is hypothesized to be the effects of misexpression of HOX genes, abnormal SHH gradient, or the loss of balance between GLI3A and GLI3R. Disruption of canonical and non-canonical Wnt signaling is involved in the pathogenesis of SHFM. Whatever the causative genes of SHFM are, the mutations seem to lead to dysregulation of Fgf8 in AER cells of the central parts of the hands and feet and disruption of Wnt-Bmp-Fgf signaling pathways in AER.
Collapse
Affiliation(s)
- Piranit N Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| | - Bruce M Carlson
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|