1
|
Melters DP, Bui M, Rakshit T, Grigoryev SA, Sturgill D, Dalal Y. High-resolution analysis of human centromeric chromatin. Life Sci Alliance 2025; 8:e202402819. [PMID: 39848706 PMCID: PMC11757159 DOI: 10.26508/lsa.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays. CENP-C complex-bound chromatin was refractory to MNase digestion. The CENP-C complex increased in height throughout the cell cycle culminating in mitosis, and the smaller CENP-C complex corresponds to the dimensions of in vitro reconstituted constitutive centromere-associated network. In addition, we found two distinct CENP-A nucleosomal configurations; the taller variant was associated with the CENP-C complex. Finally, CENP-A mutants partially corrected CENP-C overexpression-induced centromeric transcription and mitotic defects. In all, our data support a working model in which CENP-C is critical in regulating centromere homeostasis by supporting a unique higher order structure of centromeric chromatin and altering the accessibility of the centromeric chromatin fiber for transcriptional machinery.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
| | - Minh Bui
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
| | - Tatini Rakshit
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi, India
| | | | - David Sturgill
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
- National Cancer Institute, Center for Cancer Genomics, Bethesda, MD, USA
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
| |
Collapse
|
2
|
Graham E, Rampazzo L, Brian Leung CW, Wall J, Gerőcz EZ, Liskovykh M, Goncharov N, Saayman X, Gundogdu R, Kanemaki MT, Masumoto H, Larionov V, Kouprina N, Esashi F. The homologous recombination factors BRCA2 and PALB2 interplay with mismatch repair pathways to maintain centromere stability and cell viability. Cell Rep 2025; 44:115259. [PMID: 39893637 DOI: 10.1016/j.celrep.2025.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 09/06/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Centromeres are crucial for chromosome segregation but are vulnerable to breakage and recombination due to their repetitive DNA. The mechanisms protecting centromeres from these instabilities remain incompletely understood. This study investigates the role of the homologous recombination (HR) mediators BRCA2 and PALB2 in centromere stability. We find that BRCA2, but not PALB2, is essential for maintaining a human artificial chromosome. In native chromosomes, BRCA2 ensures CENP-A occupancy and prevents DNA fragility at centromeres. Conversely, PALB2 does not affect CENP-A, whereas its depletion increases centromeric DNA breaks in non-cancerous cells only. Interestingly, depleting the mismatch repair (MMR) factor MLH1 masks centromere fragility caused by BRCA2 or PALB2 loss, suggesting that MLH1 contributes to DNA instability when BRCA2 or PALB2 is absent. However, cells deficient in both BRCA2/PALB2 and MLH1 have reduced survival. These results highlight a critical balance between HR and MMR factors in preserving centromere integrity and cell viability.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucia Rampazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jacob Wall
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolay Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ramazan Gundogdu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, Türkiye
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Advanced Studies, SOKENDAI, Shizuoka, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d, Japan
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Chabot BJ, Sun R, Amjad A, Hoyt SJ, Ouyang L, Courret C, Drennan R, Leo L, Larracuente AM, Core LJ, O'Neill RJ, Mellone BG. Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. Genome Biol 2024; 25:295. [PMID: 39558354 PMCID: PMC11575011 DOI: 10.1186/s13059-024-03433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity. RESULTS In this study, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3) in Drosophila melanogaster, currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis, suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin. CONCLUSIONS We propose that Jockey-3 preferentially inserts at the centromere to ensure its own selfish propagation, while contributing to transcription across these regions. Given the conservation of retroelements as centromere components through evolution, our findings may offer a basis for understanding similar associations in other species.
Collapse
Affiliation(s)
- B J Chabot
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - R Sun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - A Amjad
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - S J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - L Ouyang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - C Courret
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - R Drennan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - L Leo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
- Present Address: RNA Editing Lab, Onco-Haematology Department, Genetics and Epigenetics of Pediatric Cancers, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - A M Larracuente
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - L J Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - B G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
4
|
Pardo-Lorente N, Gkanogiannis A, Cozzuto L, Gañez Zapater A, Espinar L, Ghose R, Severino J, García-López L, Aydin RG, Martin L, Neguembor MV, Darai E, Cosma MP, Batlle-Morera L, Ponomarenko J, Sdelci S. Nuclear localization of MTHFD2 is required for correct mitosis progression. Nat Commun 2024; 15:9529. [PMID: 39532843 PMCID: PMC11557897 DOI: 10.1038/s41467-024-51847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
Subcellular compartmentalization of metabolic enzymes establishes a unique metabolic environment that elicits specific cellular functions. Indeed, the nuclear translocation of certain metabolic enzymes is required for epigenetic regulation and gene expression control. Here, we show that the nuclear localization of the mitochondrial enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) ensures mitosis progression. Nuclear MTHFD2 interacts with proteins involved in mitosis regulation and centromere stability, including the methyltransferases KMT5A and DNMT3B. Loss of MTHFD2 induces severe methylation defects and impedes correct mitosis completion. MTHFD2 deficient cells display chromosome congression and segregation defects and accumulate chromosomal aberrations. Blocking the catalytic nuclear function of MTHFD2 recapitulates the phenotype observed in MTHFD2 deficient cells, whereas restricting MTHFD2 to the nucleus is sufficient to ensure correct mitotic progression. Our discovery uncovers a nuclear role for MTHFD2, supporting the notion that translocation of metabolic enzymes to the nucleus is required to meet precise chromatin needs.
Collapse
Affiliation(s)
- Natalia Pardo-Lorente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laura García-López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Rabia Gül Aydin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Batlle-Morera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
5
|
Chen YL, Jones AN, Crawford A, Sattler M, Ettinger A, Torres-Padilla ME. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells. J Cell Biol 2024; 223:e202309027. [PMID: 38625077 PMCID: PMC11022885 DOI: 10.1083/jcb.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.
Collapse
Affiliation(s)
- Yung-Li Chen
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Amy Crawford
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Bioscience, Bavarian NMR Center, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany
| |
Collapse
|
6
|
Chung TH, Zhuravskaya A, Makeyev EV. Regulation potential of transcribed simple repeated sequences in developing neurons. Hum Genet 2024; 143:875-895. [PMID: 38153590 PMCID: PMC11294396 DOI: 10.1007/s00439-023-02626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Simple repeated sequences (SRSs), defined as tandem iterations of microsatellite- to satellite-sized DNA units, occupy a substantial part of the human genome. Some of these elements are known to be transcribed in the context of repeat expansion disorders. Mounting evidence suggests that the transcription of SRSs may also contribute to normal cellular functions. Here, we used genome-wide bioinformatics approaches to systematically examine SRS transcriptional activity in cells undergoing neuronal differentiation. We identified thousands of long noncoding RNAs containing >200-nucleotide-long SRSs (SRS-lncRNAs), with hundreds of these transcripts significantly upregulated in the neural lineage. We show that SRS-lncRNAs often originate from telomere-proximal regions and that they have a strong potential to form multivalent contacts with a wide range of RNA-binding proteins. Our analyses also uncovered a cluster of neurally upregulated SRS-lncRNAs encoded in a centromere-proximal part of chromosome 9, which underwent an evolutionarily recent segmental duplication. Using a newly established in vitro system for rapid neuronal differentiation of induced pluripotent stem cells, we demonstrate that at least some of the bioinformatically predicted SRS-lncRNAs, including those encoded in the segmentally duplicated part of chromosome 9, indeed increase their expression in developing neurons to readily detectable levels. These and other lines of evidence suggest that many SRSs may be expressed in a cell type and developmental stage-specific manner, providing a valuable resource for further studies focused on the functional consequences of SRS-lncRNAs in the normal development of the human brain, as well as in the context of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tek Hong Chung
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
7
|
Filliaux S, Bertelsen C, Baughman H, Komives E, Lyubchenko Y. The Interaction of NF-κB Transcription Factor with Centromeric Chromatin. J Phys Chem B 2024; 128:5803-5813. [PMID: 38860885 DOI: 10.1021/acs.jpcb.3c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-Anuc) and H3 nucleosomes (H3nuc) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-Anuc have a different structure than H3nuc, decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3nuc to 121 bp for CENP-Anuc. All these factors can contribute to centromere function. We investigated the interaction of H3nuc and CENP-Anuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized atomic force microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3nuc, removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel homology domain and missing the transcription activation domain (TAD), suggesting that RelATAD is not critical in unraveling H3nuc. By contrast, NF-κB did not bind to or unravel CENP-Anuc. These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.
Collapse
Affiliation(s)
- Shaun Filliaux
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Chloe Bertelsen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Hannah Baughman
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093-0378, United States
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093-0378, United States
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
8
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an evolutionarily conserved key regulator for satellite DNA transcription. Nat Commun 2024; 15:5151. [PMID: 38886382 PMCID: PMC11183047 DOI: 10.1038/s41467-024-49567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Santinello B, Sun R, Amjad A, Hoyt SJ, Ouyang L, Courret C, Drennan R, Leo L, Larracuente AM, Core L, O'Neill RJ, Mellone BG. Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.574223. [PMID: 38293134 PMCID: PMC10827089 DOI: 10.1101/2024.01.14.574223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity. Here, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3 ) in Drosophila melanogaster , currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis , suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A, and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin. We propose that Jockey-3 contributes to the epigenetic maintenance of centromeres by promoting chromatin transcription, while inserting preferentially within these regions, selfishly ensuring its continued expression and transmission. Given the conservation of retroelements as centromere components through evolution, our findings have broad implications in understanding this association in other species.
Collapse
|
10
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an Evolutionarily Conserved Key Regulator for Satellite DNA Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592391. [PMID: 38746280 PMCID: PMC11092777 DOI: 10.1101/2024.05.03.592391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
11
|
Ramakrishnan Chandra J, Kalidass M, Demidov D, Dabravolski SA, Lermontova I. The role of centromeric repeats and transcripts in kinetochore assembly and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:982-996. [PMID: 37665331 DOI: 10.1111/tpj.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Centromeres are the chromosomal domains, where the kinetochore protein complex is formed, mediating proper segregation of chromosomes during cell division. Although the function of centromeres has remained conserved during evolution, centromeric DNA is highly variable, even in closely related species. In addition, the composition of the kinetochore complexes varies among organisms. Therefore, it is assumed that the centromeric position is determined epigenetically, and the centromeric histone H3 (CENH3) serves as an epigenetic marker. The loading of CENH3 onto centromeres depends on centromere-licensing factors, chaperones, and transcription of centromeric repeats. Several proteins that regulate CENH3 loading and kinetochore assembly interact with the centromeric transcripts and DNA in a sequence-independent manner. However, the functional aspects of these interactions are not fully understood. This review discusses the variability of centromeric sequences in different organisms and the regulation of their transcription through the RNA Pol II and RNAi machinery. The data suggest that the interaction of proteins involved in CENH3 loading and kinetochore assembly with centromeric DNA and transcripts plays a role in centromere, and possibly neocentromere, formation in a sequence-independent manner.
Collapse
Affiliation(s)
| | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel, 2161002, Israel
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| |
Collapse
|
12
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
14
|
Contreras A, Perea-Resa C. Transcriptional repression across mitosis: mechanisms and functions. Biochem Soc Trans 2024; 52:455-464. [PMID: 38372373 PMCID: PMC10903446 DOI: 10.1042/bst20231071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Transcription represents a central aspect of gene expression with RNA polymerase machineries (RNA Pol) driving the synthesis of RNA from DNA template molecules. In eukaryotes, a total of three RNA Pol enzymes generate the plethora of RNA species and RNA Pol II is the one transcribing all protein-coding genes. A high number of cis- and trans-acting factors orchestrates RNA Pol II-mediated transcription by influencing the chromatin recruitment, activation, elongation, and/or termination steps. The levels of DNA accessibility, defining open-euchromatin versus close-heterochromatin, delimits RNA Pol II activity as well as the encounter with other factors acting on chromatin such as the DNA replication or DNA repair machineries. The stage of the cell cycle highly influences RNA Pol II activity with mitosis representing the major challenge. In fact, there is a massive inhibition of transcription during the mitotic entry coupled with chromatin dissociation of most of the components of the transcriptional machinery. Mitosis, as a consequence, highly compromises the transcriptional memory and the perpetuation of cellular identity. Once mitosis ends, transcription levels immediately recover to define the cell fate and to safeguard the proper progression of daughter cells through the cell cycle. In this review, we evaluate our current understanding of the transcriptional repression associated with mitosis with a special focus on the molecular mechanisms involved, on the potential function behind the general repression, and on the transmission of the transcriptional machinery into the daughter cells. We finally discuss the contribution that errors in the inheritance of the transcriptional machinery across mitosis might play in stem cell aging.
Collapse
Affiliation(s)
- A. Contreras
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| | - C. Perea-Resa
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
15
|
Filliaux S, Bertelsen C, Baughman H, Komives E, Lyubchenko YL. The Interaction of NF-κB Transcription Factor with Centromeric Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580208. [PMID: 38405937 PMCID: PMC10888803 DOI: 10.1101/2024.02.13.580208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-A nuc ) and H3 nucleosomes (H3 nuc ) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-A nuc have a different structure than H3 nuc , decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3 nuc to 121 bp for CENP-A nuc . All these factors can contribute to centromere function. We investigated the interaction of H3 nuc and CENP-A nuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized Atomic Force Microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3 nuc , removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel Homology domain and missing the transcription activation domain (TAD), suggesting the RelA TAD is not critical in unraveling H3 nuc . By contrast, NF-κB did not bind to or unravel CENP- A nuc . These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.
Collapse
|
16
|
Abstract
Long non-coding RNAs (lncRNAs) are significant contributors in maintaining genomic integrity through epigenetic regulation. LncRNAs can interact with chromatin-modifying complexes in both cis and trans pathways, drawing them to specific genomic loci and influencing gene expression via DNA methylation, histone modifications, and chromatin remodeling. They can also operate as building blocks to assemble different chromatin-modifying components, facilitating their interactions and gene regulatory functions. Deregulation of these molecules has been associated with various human diseases, including cancer, cardiovascular disease, and neurological disorders. Thus, lncRNAs are implicated as potential diagnostic indicators and therapeutic targets. This review discusses the current understanding of how lncRNAs mediate epigenetic control, genomic integrity, and their putative functions in disease pathogenesis.
Collapse
Affiliation(s)
- Ganesan Arunkumar
- The LncRNA, Epigenetics, and Genome Organization Laboratory, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
17
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
18
|
Kyriacou E, Heun P. Centromere structure and function: lessons from Drosophila. Genetics 2023; 225:iyad170. [PMID: 37931172 PMCID: PMC10697814 DOI: 10.1093/genetics/iyad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 11/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to unravel the underlying strategies that evolved to achieve a common goal. This is particularly true for centromeres, specialized genomic regions present on all eukaryotic chromosomes that function as the platform for the assembly of kinetochores. These multiprotein structures play an essential role during cell division by connecting chromosomes to spindle microtubules in mitosis and meiosis to mediate accurate chromosome segregation. Here, we will take a historical perspective on the study of fly centromeres, aiming to highlight not only the important similarities but also the differences identified that contributed to advancing centromere biology. We will discuss the current knowledge on the sequence and chromatin organization of fly centromeres together with advances for identification of centromeric proteins. Then, we will describe both the factors and processes involved in centromere organization and how they work together to provide an epigenetic identity to the centromeric locus. Lastly, we will take an evolutionary point of view of centromeres and briefly discuss current views on centromere drive.
Collapse
Affiliation(s)
- Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patrick Heun
- Wellcome Centre of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
Baumann C, Zhang X, Viveiros MM, De La Fuente R. Pericentric major satellite transcription is essential for meiotic chromosome stability and spindle pole organization. Open Biol 2023; 13:230133. [PMID: 37935356 PMCID: PMC10645078 DOI: 10.1098/rsob.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
In somatic cells, mitotic transcription of major satellite non-coding RNAs is tightly regulated and essential for heterochromatin formation and the maintenance of genome integrity. We recently demonstrated that major satellite transcripts are expressed, and chromatin-bound during mouse oocyte meiosis. Pericentric satellite RNAs are also expressed in human oocytes. However, the specific biological function(s) during oocyte meiosis remain to be established. Here, we use validated locked nucleic acid gapmers for major satellite RNA depletion followed by live cell imaging, and superresolution analysis to determine the role of pericentric non-coding RNAs during female meiosis. Depletion of satellite RNA induces mesoscale changes in pericentric heterochromatin structure leading to chromosome instability, kinetochore attachment errors and abnormal chromosome alignment. Chromosome misalignment is associated with spindle defects, microtubule instability and, unexpectedly, loss of acentriolar microtubule organizing centre (aMTOC) tethering to spindle poles. Pericentrin fragmentation and failure to assemble ring-like aMTOCs with loss of associated polo-like kinase 1 provide critical insight into the mechanisms leading to impaired spindle pole integrity. Inhibition of transcription or RNA splicing phenocopies the chromosome alignment errors and spindle defects, suggesting that pericentric transcription during oocyte meiosis is required to regulate heterochromatin structure, chromosome segregation and maintenance of spindle organization.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| |
Collapse
|
20
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
21
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
22
|
Melters DP, Neuman KC, Bentahar RS, Rakshit T, Dalal Y. Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy. eLife 2023; 12:e86709. [PMID: 37728600 PMCID: PMC10511241 DOI: 10.7554/elife.86709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Keir C Neuman
- National Heart, Lung, and Blood Institute, Laboratory of Single Molecule BiophysicsBethesdaUnited States
| | - Reda S Bentahar
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Tatini Rakshit
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
- Department of Chemistry, Shiv Nadar UniversityDadriIndia
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| |
Collapse
|
23
|
Ninomiya K, Yamazaki T, Hirose T. Satellite RNAs: emerging players in subnuclear architecture and gene regulation. EMBO J 2023; 42:e114331. [PMID: 37526230 PMCID: PMC10505914 DOI: 10.15252/embj.2023114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | | | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| |
Collapse
|
24
|
Das A, Boese KG, Tachibana K, Baek SH, Lampson MA, Black BE. Centromere-specifying nucleosomes persist in aging mouse oocytes in the absence of nascent assembly. Curr Biol 2023; 33:3759-3765.e3. [PMID: 37582374 PMCID: PMC10528140 DOI: 10.1016/j.cub.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres are defined epigenetically by the presence of a histone H3 variant, CENP-A.1 In cultured somatic cells, an established paradigm of cell-cycle-coupled propagation maintains centromere identity: CENP-A is partitioned between sisters during replication and replenished by new assembly, which is restricted to G1. The mammalian female germ line challenges this model because of the cell-cycle arrest between pre-meiotic S phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades). New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocytes,2,3 suggesting that a similar process may be required for centromere inheritance in mammals. To test this hypothesis, we developed an oocyte-specific conditional knockout (cKO) mouse for Mis18α, an essential component of the assembly machinery. We find that embryos derived from Mis18α knockout oocytes fail to assemble CENP-A nucleosomes prior to zygotic genome activation (ZGA), validating the knockout model. We show that deletion of Mis18α in the female germ line at the time of birth has no impact on centromeric CENP-A nucleosome abundance, even after 6-8 months of aging. In addition, there is no detectable detriment to fertility. Thus, centromere chromatin is maintained long-term, independent of new assembly during the extended prophase I arrest in mouse oocytes.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn G Boese
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kikue Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826, Republic of Korea
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Zhu J, Guo Q, Choi M, Liang Z, Yuen KWY. Centromeric and pericentric transcription and transcripts: their intricate relationships, regulation, and functions. Chromosoma 2023:10.1007/s00412-023-00801-x. [PMID: 37401943 PMCID: PMC10356649 DOI: 10.1007/s00412-023-00801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Centromeres are no longer considered to be silent. Both centromeric and pericentric transcription have been discovered, and their RNA transcripts have been characterized and probed for functions in numerous monocentric model organisms recently. Here, we will discuss the challenges in centromere transcription studies due to the repetitive nature and sequence similarity in centromeric and pericentric regions. Various technological breakthroughs have helped to tackle these challenges and reveal unique features of the centromeres and pericentromeres. We will briefly introduce these techniques, including third-generation long-read DNA and RNA sequencing, protein-DNA and RNA-DNA interaction detection methods, and epigenomic and nucleosomal mapping techniques. Interestingly, some newly analyzed repeat-based holocentromeres also resemble the architecture and the transcription behavior of monocentromeres. We will summarize evidences that support the functions of the transcription process and stalling, and those that support the functions of the centromeric and pericentric RNAs. The processing of centromeric and pericentric RNAs into multiple variants and their diverse structures may also provide clues to their functions. How future studies may address the separation of functions of specific centromeric transcription steps, processing pathways, and the transcripts themselves will also be discussed.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Qiao Guo
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- Institute of Molecular Physiology, Gaoke Innovation Center, Shenzhen Bay Laboratory, Guangming District, Guangqiao Road, Shenzhen, China
| | - Minjun Choi
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Zhoubin Liang
- Institute of Molecular Physiology, Gaoke Innovation Center, Shenzhen Bay Laboratory, Guangming District, Guangqiao Road, Shenzhen, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Kitagawa R, Niikura Y, Becker A, Houghton PJ, Kitagawa K. EWSR1 maintains centromere identity. Cell Rep 2023; 42:112568. [PMID: 37243594 PMCID: PMC10758295 DOI: 10.1016/j.celrep.2023.112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
The centromere is essential for ensuring high-fidelity transmission of chromosomes. CENP-A, the centromeric histone H3 variant, is thought to be the epigenetic mark of centromere identity. CENP-A deposition at the centromere is crucial for proper centromere function and inheritance. Despite its importance, the precise mechanism responsible for maintenance of centromere position remains obscure. Here, we report a mechanism to maintain centromere identity. We demonstrate that CENP-A interacts with EWSR1 (Ewing sarcoma breakpoint region 1) and EWSR1-FLI1 (the oncogenic fusion protein in Ewing sarcoma). EWSR1 is required for maintaining CENP-A at the centromere in interphase cells. EWSR1 and EWSR1-FLI1 bind CENP-A through the SYGQ2 region within the prion-like domain, important for phase separation. EWSR1 binds to R-loops through its RNA-recognition motif in vitro. Both the domain and motif are required for maintaining CENP-A at the centromere. Therefore, we conclude that EWSR1 guards CENP-A in centromeric chromatins by binding to centromeric RNA.
Collapse
Affiliation(s)
- Risa Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Yohei Niikura
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Argentina Becker
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
27
|
Smurova K, Damizia M, Irene C, Stancari S, Berto G, Perticari G, Iacovella MG, D'Ambrosio I, Giubettini M, Philippe R, Baggio C, Callegaro E, Casagranda A, Corsini A, Polese VG, Ricci A, Dassi E, De Wulf P. Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 2023; 14:3172. [PMID: 37263996 DOI: 10.1038/s41467-023-38920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Kinetochores assemble on centromeres via histone H3 variant CENP-A and low levels of centromere transcripts (cenRNAs). The latter are ensured by the downregulation of RNA polymerase II (RNAPII) activity, and cenRNA turnover by the nuclear exosome. Using S. cerevisiae, we now add protein kinase Rio1 to this scheme. Yeast cenRNAs are produced either as short (median lengths of 231 nt) or long (4458 nt) transcripts, in a 1:1 ratio. Rio1 limits their production by reducing RNAPII accessibility and promotes cenRNA degradation by the 5'-3'exoribonuclease Rat1. Rio1 similarly curtails the concentrations of noncoding pericenRNAs. These exist as short transcripts (225 nt) at levels that are minimally two orders of magnitude higher than the cenRNAs. In yeast depleted of Rio1, cen- and pericenRNAs accumulate, CEN nucleosomes and kinetochores misform, causing chromosome instability. The latter phenotypes are also observed with human cells lacking orthologue RioK1, suggesting that CEN regulation by Rio1/RioK1 is evolutionary conserved.
Collapse
Affiliation(s)
- Ksenia Smurova
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Damizia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Carmela Irene
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Stefania Stancari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giovanna Berto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Perticari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giuseppina Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Ilaria D'Ambrosio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giubettini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Réginald Philippe
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Chiara Baggio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Elisabetta Callegaro
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Andrea Casagranda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Corsini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Vincenzo Gentile Polese
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anna Ricci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Peter De Wulf
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
28
|
Malik KK, Sridhara SC, Lone KA, Katariya PD, Pulimamidi D, Tyagi S. MLL methyltransferases regulate H3K4 methylation to ensure CENP-A assembly at human centromeres. PLoS Biol 2023; 21:e3002161. [PMID: 37379335 PMCID: PMC10335677 DOI: 10.1371/journal.pbio.3002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The active state of centromeres is epigenetically defined by the presence of CENP-A interspersed with histone H3 nucleosomes. While the importance of dimethylation of H3K4 for centromeric transcription has been highlighted in various studies, the identity of the enzyme(s) depositing these marks on the centromere is still unknown. The MLL (KMT2) family plays a crucial role in RNA polymerase II (Pol II)-mediated gene regulation by methylating H3K4. Here, we report that MLL methyltransferases regulate transcription of human centromeres. CRISPR-mediated down-regulation of MLL causes loss of H3K4me2, resulting in an altered epigenetic chromatin state of the centromeres. Intriguingly, our results reveal that loss of MLL, but not SETD1A, increases co-transcriptional R-loop formation, and Pol II accumulation at the centromeres. Finally, we report that the presence of MLL and SETD1A is crucial for kinetochore maintenance. Altogether, our data reveal a novel molecular framework where both the H3K4 methylation mark and the methyltransferases regulate stability and identity of the centromere.
Collapse
Affiliation(s)
- Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Sreerama Chaitanya Sridhara
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Payal Deepakbhai Katariya
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Deepshika Pulimamidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
29
|
Das A, Boese KG, Tachibana K, Baek SH, Lampson MA, Black BE. Centromere-specifying nucleosomes persist in aging mouse oocytes in the absence of nascent assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541332. [PMID: 37292821 PMCID: PMC10245701 DOI: 10.1101/2023.05.18.541332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres are defined epigenetically by the presence of a histone H3 variant, CENP-A 1 . In cultured somatic cells, an established paradigm of cell cycle-coupled propagation maintains centromere identity: CENP-A is partitioned between sisters during replication and replenished by new assembly, which is restricted to G1. The mammalian female germline challenges this model because of the cell cycle arrest between pre-meiotic S-phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades). New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocyte 2,3 , suggesting that a similar process may be required for centromere inheritance in mammals. However, we show that centromere chromatin is maintained long-term independent of new assembly during the extended prophase I arrest in mouse oocytes. Conditional knockout of Mis18α, an essential component of the assembly machinery, in the female germline at the time of birth has almost no impact on centromeric CENP-A nucleosome abundance nor any detectable detriment to fertility.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn G. Boese
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kikue Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute; University of Pennsylvania, Philadelphia PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
30
|
Bosco N, Goldberg A, Zhao X, Mays JC, Cheng P, Johnson AF, Bianchi JJ, Toscani C, Di Tommaso E, Katsnelson L, Annuar D, Mei S, Faitelson RE, Pesselev IY, Mohamed KS, Mermerian A, Camacho-Hernandez EM, Gionco CA, Manikas J, Tseng YS, Sun Z, Fani S, Keegan S, Lippman SM, Fenyö D, Giunta S, Santaguida S, Davoli T. KaryoCreate: A CRISPR-based technology to study chromosome-specific aneuploidy by targeting human centromeres. Cell 2023; 186:1985-2001.e19. [PMID: 37075754 PMCID: PMC10676289 DOI: 10.1016/j.cell.2023.03.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/17/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-β, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.
Collapse
Affiliation(s)
- Nazario Bosco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleah Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Pan Cheng
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Adam F Johnson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joy J Bianchi
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Cecilia Toscani
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Di Tommaso
- Department of Biology and Biotechnology Charles Darwin, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Lizabeth Katsnelson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Dania Annuar
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sally Mei
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Roni E Faitelson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Ilan Y Pesselev
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Kareem S Mohamed
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Angela Mermerian
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Elaine M Camacho-Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Courtney A Gionco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Julie Manikas
- Department of Cell Biology, NYU Langone Health, New York, NY, USA
| | - Yi-Shuan Tseng
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Zhengxi Sun
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Somayeh Fani
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Scott M Lippman
- Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Simona Giunta
- Department of Biology and Biotechnology Charles Darwin, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
31
|
Mahlke MA, Lumerman L, Ly P, Nechemia-Arbely Y. Epigenetic centromere identity is precisely maintained through DNA replication but is uniquely specified among human cells. Life Sci Alliance 2023; 6:e202201807. [PMID: 36596606 PMCID: PMC9811134 DOI: 10.26508/lsa.202201807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Centromere identity is defined and maintained epigenetically by the presence of the histone variant CENP-A. How centromeric CENP-A position is specified and precisely maintained through DNA replication is not fully understood. The recently released Telomere-to-Telomere (T2T) genome assembly containing the first complete human centromere sequences provides a new resource for examining CENP-A position. Mapping CENP-A position in clones of the same cell line to the T2T assembly identified highly similar CENP-A position after multiple cell divisions. In contrast, centromeric CENP-A epialleles were evident at several centromeres of different human cell lines, demonstrating the location of CENP-A enrichment and the site of kinetochore recruitment vary among human cells. Across the cell cycle, CENP-A molecules deposited in G1 phase are maintained in their precise position through DNA replication. Thus, despite CENP-A dilution during DNA replication, CENP-A is precisely reloaded onto the same sequences within the daughter centromeres, maintaining unique centromere identity among human cells.
Collapse
Affiliation(s)
- Megan A Mahlke
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lior Lumerman
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yael Nechemia-Arbely
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
33
|
Mohapatra S, Winkle M, Ton AN, Nguyen D, Calin GA. The Role of Non-Coding RNAs in Chromosomal Instability in Cancer. J Pharmacol Exp Ther 2023; 384:10-19. [PMID: 36167417 PMCID: PMC9827503 DOI: 10.1124/jpet.122.001357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Chromosomal instability (CIN) is characterized by an increased frequency of changes in chromosome structure or number and is regarded as a hallmark of cancer. CIN plays a prevalent role in tumorigenesis and cancer progression by assisting the cancer cells' phenotypic adaptation to stress, which have been tightly linked to therapy resistance and metastasis. Both CIN-inducing and CIN-repressing agents are being clinically tested for the treatment of cancer to increase CIN levels to unsustainable levels leading to cell death or to decrease CIN levels to limit the development of drug resistance, respectively. Non-coding RNAs (ncRNAs) including microRNAs and long ncRNAs (lncRNAs) have been fundamentally implicated in CIN. The miR-22, miR-26a, miR-28, and miR-186 target important checkpoint proteins involved in mediating chromosomal stability and their expression modulation has been directly related to CIN occurrence. lncRNAs derived from telomeric, centrosomal, and enhancer regions play an important role in mediating genome stability, while specific lncRNA transcripts including genomic instability inducing RNA called Ginir, P53-responsive lncRNA termed as GUARDIN, colon cancer-associated transcript 2, PCAT2, and ncRNA activated by DNA damage called NORAD have been shown to act within CIN-associated pathways. In this review, we discuss how these ncRNAs either maintain or disrupt the stability of chromosomes and how these mechanisms could be exploited for novel therapeutic approaches targeting CIN in cancer patients. SIGNIFICANCE STATEMENT: Chromosomal instability increases tumor heterogeneity and thereby assists the phenotypic adaptation of cancer cells, causing therapy resistance and metastasis. Several microRNAs and long non-coding RNAs that have been causally linked to chromosomal instability could represent novel therapeutic targets. Understanding the role of non-coding RNAs in regulating different genes involved in driving chromosomal instability will give insights into how non-coding RNAs can be utilized toward modifying chemotherapeutic regimens in different cancers.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Melanie Winkle
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Anh N Ton
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Dien Nguyen
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - George A Calin
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| |
Collapse
|
34
|
Zhang C, Wang D, Hao Y, Wu S, Luo J, Xue Y, Wang D, Li G, Liu L, Shao C, Li H, Yuan J, Zhu M, Fu XD, Yang X, Chen R, Teng Y. LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Mol Cell 2022; 82:4018-4032.e9. [PMID: 36332605 PMCID: PMC9648614 DOI: 10.1016/j.molcel.2022.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuheng Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Liu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Jinfeng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
35
|
El-Ahwany E, Hassan M, Elzallat M, Abdelsalam L, El-Sawy MAH, Seyam M. Association of Sat-a and Alu methylation status with HCV-induced chronic liver disease and hepatocellular carcinoma. Virus Res 2022; 321:198928. [PMID: 36100006 DOI: 10.1016/j.virusres.2022.198928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The combination of epigenetic and genetic abnormalities contributes together to the development of liver cancer. The methylation status of the repetitive elements (REs) in DNA has been investigated in a variety of human illnesses. However, the methylation patterns of Sat-α and Alu REs in chronic liver disease (CLD) and hepatocellular carcinoma (HCC) caused by hepatitis C virus (HCV) have never been studied before. METHODOLOGY In this study, 3 groups of participants including 50 patients having HCV-induced CLD, 50 patients having HCV-induced HCC, and 46 healthy subjects were subjected to measurement of Sat-α and Alu methylation using the quantitative MethyLight assay. RESULTS Sat-α and Alu methylation percentages decreased significantly in both CLD and HCC, compared to control. Also, a significant Sat-α hypomethylation was detected in HCC, compared to CLD. In addition, Sat-α and Alu methylation showed a significant decline as lesion size grew. However, only Sat-α hypomethylation was significantly increased in association with portal vein thrombosis and the MELD score. Sat-α methylation percentage had the highest sensitivity and specificity for diagnosing HCC (100% and 84.4%) followed by α-fetoprotein (80% and 84.4%) and Alu methylation (66% and 61.5%). Furthermore, there was a strong positive correlation between Sat-α and Alu methylation. CONCLUSIONS Measuring Sat-α and Alu methylation provides us with a new tool for early detecting HCV-induced CLD and hepatocarcinogenesis. Sat-α has the potential to be utilized as an independent predictive parameter for HCC development and progression because of its ability to distinguish between CLD and HCC with their different MELD scores.
Collapse
Affiliation(s)
- Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Lobna Abdelsalam
- Human Genetics Department, Faculty of Medicine, Cairo University, Cairo, Egypt; Human Genetics Department, Faculty of Medicine, University of North Carolina, USA
| | | | - Moataz Seyam
- Hepato-Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
36
|
Naughton C, Huidobro C, Catacchio CR, Buckle A, Grimes GR, Nozawa RS, Purgato S, Rocchi M, Gilbert N. Human centromere repositioning activates transcription and opens chromatin fibre structure. Nat Commun 2022; 13:5609. [PMID: 36153345 PMCID: PMC9509383 DOI: 10.1038/s41467-022-33426-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractHuman centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere repositioning is accompanied by RNA polymerase II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in ‘open’ chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form ‘compact’ chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kinetochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.
Collapse
|
37
|
Hedouin S, Logsdon GA, Underwood JG, Biggins S. A transcriptional roadblock protects yeast centromeres. Nucleic Acids Res 2022; 50:7801-7815. [PMID: 35253883 PMCID: PMC9371891 DOI: 10.1093/nar/gkac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.
Collapse
Affiliation(s)
- Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason G Underwood
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA 94025, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
38
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Fingerhut JM, Yamashita YM. The regulation and potential functions of intronic satellite DNA. Semin Cell Dev Biol 2022; 128:69-77. [PMID: 35469677 DOI: 10.1016/j.semcdb.2022.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
40
|
Wang Y, Wu L, Yuen KWY. The roles of transcription, chromatin organisation and chromosomal processes in holocentromere establishment and maintenance. Semin Cell Dev Biol 2022; 127:79-89. [PMID: 35042676 DOI: 10.1016/j.semcdb.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
The centromere is a unique functional region on each eukaryotic chromosome where the kinetochore assembles and orchestrates microtubule attachment and chromosome segregation. Unlike monocentromeres that occupy a specific region on the chromosome, holocentromeres are diffused along the length of the chromosome. Despite being less common, holocentromeres have been verified in almost 800 nematode, insect, and plant species. Understanding of the molecular and epigenetic regulation of holocentromeres is lagging that of monocentromeres. Here we review how permissive locations for holocentromeres are determined across the genome, potentially by chromatin organisation, transcription, and non-coding RNAs, specifically in the nematode C. elegans. In addition, we discuss how holocentric CENP-A or CENP-T-containing nucleosomes are recruited and deposited, through the help of histone chaperones, licensing factors, and condensin complexes, both during de novo holocentromere establishment, and in each mitotic cell cycle. The process of resolving sister centromeres after DNA replication in holocentric organisms is also mentioned. Conservation and diversity between holocentric and monocentric organisms are highlighted, and outstanding questions are proposed.
Collapse
Affiliation(s)
- Yue Wang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Lillian Wu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong; Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
41
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|
42
|
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Semin Cell Dev Biol 2022; 135:24-34. [PMID: 35422390 DOI: 10.1016/j.semcdb.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.
Collapse
|
43
|
Molecular Dynamics and Evolution of Centromeres in the Genus Equus. Int J Mol Sci 2022; 23:ijms23084183. [PMID: 35457002 PMCID: PMC9024551 DOI: 10.3390/ijms23084183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
The centromere is the chromosomal locus essential for proper chromosome segregation. While the centromeric function is well conserved and epigenetically specified, centromeric DNA sequences are typically composed of satellite DNA and represent the most rapidly evolving sequences in eukaryotic genomes. The presence of satellite sequences at centromeres hampered the comprehensive molecular analysis of these enigmatic loci. The discovery of functional centromeres completely devoid of satellite repetitions and fixed in some animal and plant species represented a turning point in centromere biology, definitively proving the epigenetic nature of the centromere. The first satellite-free centromere, fixed in a vertebrate species, was discovered in the horse. Later, an extraordinary number of satellite-free neocentromeres had been discovered in other species of the genus Equus, which remains the only mammalian genus with numerous satellite-free centromeres described thus far. These neocentromeres arose recently during evolution and are caught in a stage of incomplete maturation. Their presence made the equids a unique model for investigating, at molecular level, the minimal requirements for centromere seeding and evolution. This model system provided new insights on how centromeres are established and transmitted to the progeny and on the role of satellite DNA in different aspects of centromere biology.
Collapse
|
44
|
Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, de Lima LG, Limouse C, Halabian R, Wojenski L, Rodriguez M, Altemose N, Rhie A, Core LJ, Gerton JL, Makalowski W, Olson D, Rosen J, Smit AFA, Straight AF, Vollger MR, Wheeler TJ, Schatz MC, Eichler EE, Phillippy AM, Timp W, Miga KH, O’Neill RJ. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 2022; 376:eabk3112. [PMID: 35357925 PMCID: PMC9301658 DOI: 10.1126/science.abk3112] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome. We identified previously unknown satellite arrays, expanded the catalog of variants and families for repeats and mobile elements, characterized classes of complex composite repeats, and located retroelement transduction events. We detected nascent transcription and delineated CpG methylation profiles to define the structure of transcriptionally active retroelements in humans, including those in centromeres. These data expand our insight into the diversity, distribution, and evolution of repetitive regions that have shaped the human genome.
Collapse
Affiliation(s)
- Savannah J. Hoyt
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Patrick G. S. Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Reza Halabian
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Luke Wojenski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matias Rodriguez
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Nicolas Altemose
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leighton J. Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | | | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Daniel Olson
- Department of Computer Science, University of Montana, Missoula, MT, USA
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Travis J. Wheeler
- Department of Computer Science, University of Montana, Missoula, MT, USA
| | - Michael C. Schatz
- Department of Computer Science and Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
45
|
Vourc’h C, Dufour S, Timcheva K, Seigneurin-Berny D, Verdel A. HSF1-Activated Non-Coding Stress Response: Satellite lncRNAs and Beyond, an Emerging Story with a Complex Scenario. Genes (Basel) 2022; 13:genes13040597. [PMID: 35456403 PMCID: PMC9032817 DOI: 10.3390/genes13040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.
Collapse
Affiliation(s)
- Claire Vourc’h
- Université de Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (C.V.); (A.V.)
| | - Solenne Dufour
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Kalina Timcheva
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Daphné Seigneurin-Berny
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - André Verdel
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
- Correspondence: (C.V.); (A.V.)
| |
Collapse
|
46
|
Arunkumar G, Baek S, Sturgill D, Bui M, Dalal Y. Oncogenic lncRNAs alter epigenetic memory at a fragile chromosomal site in human cancer cells. SCIENCE ADVANCES 2022; 8:eabl5621. [PMID: 35235361 PMCID: PMC8890707 DOI: 10.1126/sciadv.abl5621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chromosome instability is a critical event in cancer progression. Histone H3 variant CENP-A plays a fundamental role in defining centromere identity, structure, and function but is innately overexpressed in several types of solid cancers. In the cancer background, excess CENP-A is deposited ectopically on chromosome arms, including 8q24/cMYC locus, by invading transcription-coupled H3.3 chaperone pathways. Up-regulation of lncRNAs in many cancers correlates with poor prognosis and recurrence in patients. We report that transcription of 8q24-derived oncogenic lncRNAs plays an unanticipated role in altering the 8q24 chromatin landscape by H3.3 chaperone-mediated deposition of CENP-A-associated complexes. Furthermore, a transgene cassette carrying specific 8q24-derived lncRNA integrated into a naïve chromosome locus recruits CENP-A to the new location in a cis-acting manner. These data provide a plausible mechanistic link between locus-specific oncogenic lncRNAs, aberrant local chromatin structure, and the generation of new epigenetic memory at a fragile site in human cancer cells.
Collapse
|
47
|
Ghosh S, Lehner CF. Incorporation of CENP-A/CID into centromeres during early Drosophila embryogenesis does not require RNA polymerase II-mediated transcription. Chromosoma 2022; 131:1-17. [PMID: 35015118 PMCID: PMC9079035 DOI: 10.1007/s00412-022-00767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022]
Abstract
In many species, centromere identity is specified epigenetically by special nucleosomes containing a centromere-specific histone H3 variant, designated as CENP-A in humans and CID in Drosophila melanogaster. After partitioning of centromere-specific nucleosomes onto newly replicated sister centromeres, loading of additional CENP-A/CID into centromeric chromatin is required for centromere maintenance in proliferating cells. Analyses with cultured cells have indicated that transcription of centromeric DNA by RNA polymerase II is required for deposition of new CID into centromere chromatin. However, a dependence of centromeric CID loading on transcription is difficult to reconcile with the notion that the initial embryonic stages appear to proceed in the absence of transcription in Drosophila, as also in many other animal species. To address the role of RNA polymerase II–mediated transcription for CID loading in early Drosophila embryos, we have quantified the effects of alpha-amanitin and triptolide on centromeric CID-EGFP levels. Our analyses demonstrate that microinjection of these two potent inhibitors of RNA polymerase II–mediated transcription has at most a marginal effect on centromeric CID deposition during progression through the early embryonic cleavage cycles. Thus, we conclude that at least during early Drosophila embryogenesis, incorporation of CID into centromeres does not depend on RNA polymerase II–mediated transcription.
Collapse
Affiliation(s)
- Samadri Ghosh
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
48
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
49
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
50
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|