1
|
Teles-Reis J, Jain A, Liu D, Khezri R, Micheli S, Gomez AA, Dillard C, Rusten TE. EyaHOST, a modular genetic system for investigation of intercellular and tumor-host interactions in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611647. [PMID: 39314415 PMCID: PMC11418954 DOI: 10.1101/2024.09.06.611647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cell biology and genetic analysis of intracellular, intercellular and inter-organ interaction studies in animal models are key for understanding development, physiology, and disease. The MARCM technique can emulate tumor development by simultaneous clonal tumor suppressor loss-of-function generation coupled with GAL4-UAS-driven oncogene and marker expression, but the utility is limited for studying tumor-host interactions due to genetic constraints. To overcome this, we introduce EyaHOST, a novel system that replaces MARCM with the QF2-QUAS binary gene expression system under the eya promoter control, unleashing the fly community genome-wide GAL4-UAS driven tools to manipulate any host cells or tissue at scale. EyaHOST generates epithelial clones in the eye epithelium similar to MARCM. EyaHOST-driven Ras V12 oncogene overexpression coupled with scribble tumor suppressor knockdown recapitulates key cancer features, including systemic catabolic switching and organ wasting. We demonstrate effective tissue-specific manipulation of host compartments such as neighbouring epithelial cells, immune cells, fat body, and muscle using fly avatars with tissue-specific GAL4 drivers. Organ-specific inhibition of autophagy or stimulation of growth-signaling through PTEN knockdown in fat body or muscle prevents cachexia-like wasting. Additionally, we show that Ras V12 , scrib RNAi tumors induce caspase-driven apoptosis in the epithelial microenvironment. Inhibition of apoptosis by p35 expression in the microenvironment promotes tumor growth. EyaHOST offers a versatile modular platform for dissecting tumor-host interactions and other mechanisms involving intercellular and inter-organ communication in Drosophila . Highlights * eyes absent , eye disc-specific enhancer drives clonal KD recombinase flip-out activated QF2 expression in the larval eye epithelium for simultaneous QUAS-driven gain and loss-of-function analysis of gene function. *Clones are visualized by QUAS-tagBFP or QUAS-eGFP facilitating analysis of existing fluorescent reporters.*The GAL4-UAS system and existing genome-wide genetic tools are released to independently manipulate any cell population in the animal for cell biology, intercellular or inter-organ analysis for developmental, physiological, or disease model analysis.*Fly avatars for tumor-host interaction studies with multiple organs allow live monitoring and manipulation of tumors and organs in translucent larva.
Collapse
|
2
|
Parreno V, Loubiere V, Schuettengruber B, Fritsch L, Rawal CC, Erokhin M, Győrffy B, Normanno D, Di Stefano M, Moreaux J, Butova NL, Chiolo I, Chetverina D, Martinez AM, Cavalli G. Transient loss of Polycomb components induces an epigenetic cancer fate. Nature 2024; 629:688-696. [PMID: 38658752 PMCID: PMC11096130 DOI: 10.1038/s41586-024-07328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.
Collapse
Affiliation(s)
- V Parreno
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - V Loubiere
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - B Schuettengruber
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - L Fritsch
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - C C Rawal
- University of Southern California, Los Angeles, CA, USA
| | - M Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - B Győrffy
- Semmelweis University Department of Bioinformatics, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - D Normanno
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - M Di Stefano
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - J Moreaux
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- UFR Medicine, University of Montpellier, Montpellier, France
| | - N L Butova
- University of Southern California, Los Angeles, CA, USA
| | - I Chiolo
- University of Southern California, Los Angeles, CA, USA
| | - D Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A-M Martinez
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| | - G Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Khan C, Rusan NM. Using Drosophila to uncover the role of organismal physiology and the tumor microenvironment in cancer. Trends Cancer 2024; 10:289-311. [PMID: 38350736 PMCID: PMC11008779 DOI: 10.1016/j.trecan.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Cancer metastasis causes over 90% of cancer patient fatalities. Poor prognosis is determined by tumor type, the tumor microenvironment (TME), organ-specific biology, and animal physiology. While model organisms do not fully mimic the complexity of humans, many processes can be studied efficiently owing to the ease of genetic, developmental, and cell biology studies. For decades, Drosophila has been instrumental in identifying basic mechanisms controlling tumor growth and metastasis. The ability to generate clonal populations of distinct genotypes in otherwise wild-type animals makes Drosophila a powerful system to study tumor-host interactions at the local and global scales. This review discusses advancements in tumor biology, highlighting the strength of Drosophila for modeling TMEs and systemic responses in driving tumor progression and metastasis.
Collapse
Affiliation(s)
- Chaitali Khan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
5
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. Development 2023; 150:dev201872. [PMID: 37702007 PMCID: PMC10560572 DOI: 10.1242/dev.201872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536444. [PMID: 37090526 PMCID: PMC10120697 DOI: 10.1101/2023.04.11.536444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are mis-regulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate. Summary Statement Here we describe a novel mechanism by which Pc promotes an eye fate during normal development and how the eye is reprogrammed into a wing in its absence.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
7
|
Sharpe JL, Morgan J, Nisbet N, Campbell K, Casali A. Modelling Cancer Metastasis in Drosophila melanogaster. Cells 2023; 12:cells12050677. [PMID: 36899813 PMCID: PMC10000390 DOI: 10.3390/cells12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer metastasis, the process by which tumour cells spread throughout the body and form secondary tumours at distant sites, is the leading cause of cancer-related deaths. The metastatic cascade is a highly complex process encompassing initial dissemination from the primary tumour, travel through the blood stream or lymphatic system, and the colonisation of distant organs. However, the factors enabling cells to survive this stressful process and adapt to new microenvironments are not fully characterised. Drosophila have proven a powerful system in which to study this process, despite important caveats such as their open circulatory system and lack of adaptive immune system. Historically, larvae have been used to model cancer due to the presence of pools of proliferating cells in which tumours can be induced, and transplanting these larval tumours into adult hosts has enabled tumour growth to be monitored over longer periods. More recently, thanks largely to the discovery that there are stem cells in the adult midgut, adult models have been developed. We focus this review on the development of different Drosophila models of metastasis and how they have contributed to our understanding of important factors determining metastatic potential, including signalling pathways, the immune system and the microenvironment.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jason Morgan
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Nicholas Nisbet
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: (K.C.); (A.C.)
| | - Andreu Casali
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida and IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Correspondence: (K.C.); (A.C.)
| |
Collapse
|
8
|
Rizwi FA, Abubakar M, Puppala ER, Goyal A, Bhadrawamy CV, Naidu VGM, Roshan S, Tazneem B, Almalki WH, Subramaniyan V, Rawat S, Gupta G. Janus Kinase-Signal Transducer and Activator of Transcription Inhibitors for the Treatment and Management of Cancer. J Environ Pathol Toxicol Oncol 2023; 42:15-29. [PMID: 37522565 DOI: 10.1615/jenvironpatholtoxicoloncol.2023045403] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality worldwide, killing nearly 9.6 million people annually. Despite the advances in diagnosis and treatment during the last couple of decades, it remains a serious concern due to the limitations of currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. In addition, many etiological factors such as environmental and genetic factors initiate the activation of the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) pathway. This aberrant activation of the JAK-STAT pathway has been reported in various disease states, including inflammatory conditions, hematologic malignancies, and cancer. For instance, many patients with myeloproliferative neoplasms carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of pathogenesis and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK-STAT pathway. Our aim is not to be expansive but to highlight emerging ideas towards preventive therapy in a modern view of JAK-STAT inhibitors. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical drugs for managing cancer as a new therapeutic approach.
Collapse
Affiliation(s)
- Fahim Anwar Rizwi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Ch Veera Bhadrawamy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - S Roshan
- Deccan School of Pharmacy, Hyderabad, India
| | - B Tazneem
- Deccan School of Pharmacy, Hyderabad, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Sushama Rawat
- Nirma University, Institute of Pharmacy, Ahmedabad, Gujarat 382481, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
9
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
10
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|
11
|
Nagel AC, Müller D, Zimmermann M, Preiss A. The Membrane-Bound Notch Regulator Mnr Supports Notch Cleavage and Signaling Activity in Drosophila melanogaster. Biomolecules 2021; 11:1672. [PMID: 34827670 PMCID: PMC8615698 DOI: 10.3390/biom11111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand-receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand-receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.
Collapse
Affiliation(s)
- Anja C. Nagel
- Department of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (D.M.); (M.Z.); (A.P.)
| | | | | | | |
Collapse
|