1
|
Feng S, Gui Y, Yin S, Xiong X, Liu K, Li J, Dong J, Ma X, Zhou S, Zhang B, Yang S, Wang F, Wang X, Jiang X, Yuan S. Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression. EMBO J 2024; 43:4197-4227. [PMID: 39160277 PMCID: PMC11448500 DOI: 10.1038/s44318-024-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi Yin
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixiang Ma
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shunchang Zhou
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bingqian Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
4
|
He XD, Taylor LF, Miao X, Shi Y, Lin X, Yang Z, Liu X, Miao YL, Alfandari D, Cui W, Tremblay KD, Mager J. Overlapping peri-implantation phenotypes of ZNHIT1 and ZNHIT2 despite distinct functions during early mouse development. Biol Reprod 2024:ioae128. [PMID: 39194072 DOI: 10.1093/biolre/ioae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Mammalian preimplantation development culminates in the formation of a blastocyst which undergoes extensive gene expression regulation to successfully implant into the maternal endometrium. Zinc-finger HIT domain-containing (ZNHIT) 1 and 2 are members of a highly conserved family, yet they have been identified as subunits of distinct complexes. Here we report that knockout of either Znhit1 or Znhit2 results in embryonic lethality during peri-implantation stages. Znhit1 and Znhit2 mutant embryos have overlapping phenotypes, including reduced proportion of SOX2-positive ICM cells, a lack of Fgf4 expression and aberrant expression of NANOG and SOX17. Furthermore, we find that the similar phenotypes are caused by distinct mechanisms. Specifically, embryos lacking ZNHIT1 likely fail to incorporate sufficient H2A.Z at the promoter region of Fgf4 and other genes involved in cell projection organization resulting in impaired invasion of trophoblast cells during implantation. In contrast, Znhit2 mutant embryos display a complete lack of nuclear EFTUD2, a key component of U5 spliceosome, indicating a global splicing deficiency. Our findings unveil the indispensable yet distinct roles of ZNHIT1 and ZNHIT2 in early mammalian embryonic development.
Collapse
Affiliation(s)
- Xinjian Doris He
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Louis F Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yingchao Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Lyu R, Gao Y, Wu T, Ye C, Wang P, He C. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq. Nat Commun 2024; 15:6852. [PMID: 39127768 PMCID: PMC11316786 DOI: 10.1038/s41467-024-50680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.
Collapse
Affiliation(s)
- Ruitu Lyu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Yun Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Wang S, Cai Y, Li T, Wang Y, Bao Z, Wang R, Qin J, Wang Z, Liu Y, Liu Z, Chan W, Chen X, Lu G, Chen Z, Huang T, Liu H. CWF19L2 is Essential for Male Fertility and Spermatogenesis by Regulating Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403866. [PMID: 38889293 PMCID: PMC11336944 DOI: 10.1002/advs.202403866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 06/20/2024]
Abstract
The progression of spermatogenesis along specific developmental trajectories depends on the coordinated regulation of pre-mRNA alternative splicing (AS) at the post-transcriptional level. However, the fundamental mechanism of AS in spermatogenesis remains to be investigated. Here, it is demonstrated that CWF19L2 plays a pivotal role in spermatogenesis and male fertility. In germline conditional Cwf19l2 knockout mice exhibiting male sterility, impaired spermatogenesis characterized by increased apoptosis and decreased differentiated spermatogonia and spermatocytes is observed. That CWF19L2 interacted with several spliceosome proteins to participate in the proper assembly and stability of the spliceosome is discovered. By integrating RNA-seq and LACE-seq data, it is further confirmed CWF19L2 directly bound and regulated the splicing of genes related to spermatogenesis (Znhit1, Btrc, and Fbxw7) and RNA splicing (Rbfox1, Celf1, and Rbm10). Additionally, CWF19L2 can indirectly amplify its effect on splicing regulation through modulating RBFOX1. Collectively, this research establishes that CWF19L2 orchestrates a splicing factor network to ensure accurate pre-mRNA splicing during the early steps of spermatogenesis.
Collapse
|
7
|
Ishiguro KI. Mechanisms of meiosis initiation and meiotic prophase progression during spermatogenesis. Mol Aspects Med 2024; 97:101282. [PMID: 38797021 DOI: 10.1016/j.mam.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
8
|
Kitamura Y, Namekawa SH. Epigenetic priming in the male germline. Curr Opin Genet Dev 2024; 86:102190. [PMID: 38608568 PMCID: PMC11162906 DOI: 10.1016/j.gde.2024.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Epigenetic priming presets chromatin states that allow the rapid induction of gene expression programs in response to differentiation cues. In the germline, it provides the blueprint for sexually dimorphic unidirectional differentiation. In this review, we focus on epigenetic priming in the mammalian male germline and discuss how cellular memories are regulated and inherited to the next generation. During spermatogenesis, epigenetic priming predetermines cellular memories that ensure the lifelong maintenance of spermatogonial stem cells and their subsequent commitment to meiosis and to the production of haploid sperm. The paternal chromatin state is also essential for the recovery of totipotency after fertilization and contributes to paternal epigenetic inheritance. Thus, epigenetic priming establishes stable but reversible chromatin states during spermatogenesis and enables epigenetic inheritance and reprogramming in the next generation.
Collapse
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Gao J, Qin Y, Schimenti JC. Gene regulation during meiosis. Trends Genet 2024; 40:326-336. [PMID: 38177041 PMCID: PMC11003842 DOI: 10.1016/j.tig.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.
Collapse
Affiliation(s)
- Jingyi Gao
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Yiwen Qin
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Nie P, Wen S, Wang M, Xu H. Exploration of Lactiplantibacillus plantarum P101 ameliorated the alcohol-induced testicular dysfunction based on metabolome analysis. Food Chem Toxicol 2024; 185:114463. [PMID: 38244668 DOI: 10.1016/j.fct.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The decline in male sperm quality caused by multiple factors has become a widespread concern. Alcohol excessive consumption is one of the factors that induce testicular dysfunction. Testicular dysfunction caused by alcohol abuse is related to oxidative stress and inflammation. Probiotics can ameliorate alcohol-induced testicular dysfunction. However, the specific mechanism is not explicit. This study aimed to elucidate the underlying mechanism by which Lactiplantibacillus plantarum P101 ameliorates the alcohol-induced testicular dysfunction. The model of alcohol-induced testicular dysfunction in C57B/6 male mice was established according to the National Institute on Alcohol Abuse and Alcoholism, and Lactiplantibacillus plantarum P101 supplementation was orally administered to mice during the experiment. The results showed that Lactiplantibacillus plantarum P101 promoted androgen production, reduced testis inflammation, and improved testis antioxidant capacity, thereby improving sperm quality and sperm motility and ultimately ameliorating alcohol-induced testicular disorder. Three key metabolite pathways and six key metabolites were identified by metabolome analysis.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Siyue Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, PR China.
| |
Collapse
|
11
|
Ferrer P, Upadhyay S, Cai JJ, Clement TM. Novel Nuclear Roles for Testis-Specific ACTL7A and ACTL7B Supported by In Vivo Characterizations and AI Facilitated In Silico Mechanistic Modeling with Implications for Epigenetic Regulation in Spermiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582797. [PMID: 38464253 PMCID: PMC10925299 DOI: 10.1101/2024.02.29.582797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A mechanistic role for nuclear function of testis-specific actin related proteins (ARPs) is proposed here through contributions of ARP subunit swapping in canonical chromatin regulatory complexes. This is significant to our understanding of both mechanisms controlling regulation of spermiogenesis, and the expanding functional roles of the ARPs in cell biology. Among these roles, actins and ARPs are pivotal not only in cytoskeletal regulation, but also in intranuclear chromatin organization, influencing gene regulation and nucleosome remodeling. This study focuses on two testis-specific ARPs, ACTL7A and ACTL7B, exploring their intranuclear activities and broader implications utilizing combined in vivo, in vitro, and in silico approaches. ACTL7A and ACTL7B, previously associated with structural roles, are hypothesized here to serve in chromatin regulation during germline development. This study confirms the intranuclear presence of ACTL7B in spermatocytes and round spermatids, revealing a potential role in intranuclear processes, and identifies a putative nuclear localization sequence conserved across mammalian ACTL7B, indicating a potentially unique mode of nuclear transport which differs from conventional actin. Ablation of ACTL7B leads to varied transcriptional changes reported here. Additionally, in the absence of ACTL7A or ACTL7B there is a loss of intranuclear localization of HDAC1 and HDAC3, which are known regulators of epigenetic associated acetylation changes that in turn regulate gene expression. Thus, these HDACs are implicated as contributors to the aberrant gene expression observed in the KO mouse testis transcriptomic analysis. Furthermore, this study employed and confirmed the accuracy of in silico models to predict ARP interactions with Helicase-SANT-associated (HSA) domains, uncovering putative roles for testis-specific ARPs in nucleosome remodeling complexes. In these models, ACTL7A and ACTL7B were found capable of binding to INO80 and SWI/SNF nucleosome remodeler family members in a manner akin to nuclear actin and ACTL6A. These models thus implicate germline-specific ARP subunit swapping within chromatin regulatory complexes as a potential regulatory mechanism for chromatin and associated molecular machinery adaptations in nuclear reorganizations required during spermiogenesis. These results hold implications for male fertility and epigenetic programing in the male-germline that warrant significant future investigation. In summary, this study reveals that ACTL7A and ACTL7B play intranuclear gene regulation roles in male gametogenesis, adding to the multifaceted roles identified also spanning structural, acrosomal, and flagellar stability. ACTL7A and ACTL7B unique nuclear transport, impact on HDAC nuclear associations, impact on transcriptional processes, and proposed mechanism for involvement in nucleosome remodeling complexes supported by AI facilitated in silico modeling contribute to a more comprehensive understanding of the indispensable functions of ARPs broadly in cell biology, and specifically in male fertility.
Collapse
Affiliation(s)
- Pierre Ferrer
- Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - James J Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Tracy M Clement
- Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
12
|
Yu J, Sui F, Gu F, Li W, Yu Z, Wang Q, He S, Wang L, Xu Y. Structural insights into histone exchange by human SRCAP complex. Cell Discov 2024; 10:15. [PMID: 38331872 PMCID: PMC10853557 DOI: 10.1038/s41421-023-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.
Collapse
Affiliation(s)
- Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fengrui Sui
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feng Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuang He
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Säflund M, Özata DM. The MYBL1/TCFL5 transcription network: two collaborative factors with central role in male meiosis. Biochem Soc Trans 2023; 51:2163-2172. [PMID: 38015556 PMCID: PMC10754281 DOI: 10.1042/bst20231007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Male gametogenesis, spermatogenesis, is a stepwise developmental process to generate mature sperm. The most intricate process of spermatogenesis is meiosis during which two successive cell divisions ensue with dramatic cellular and molecular changes to produce haploid cells. After entry into meiosis, several forms of regulatory events control the orderly progression of meiosis and the timely entry into post-meiotic sperm differentiation. Among other mechanisms, changes to gene expression are controlled by key transcription factors. In this review, we will discuss the gene regulatory mechanisms underlying meiotic entry, meiotic progression, and post-meiotic differentiation with a particular emphasis on the MYBL1/TCFL5 regulatory architecture and how this architecture involves in various forms of transcription network motifs to regulate gene expression.
Collapse
Affiliation(s)
- Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Deniz M. Özata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Ji X, Gao J, Wei T, Jin L, Xiao G. Fear-of-intimacy-mediated zinc transport is required for Drosophila fat body endoreplication. BMC Biol 2023; 21:88. [PMID: 37069617 PMCID: PMC10111752 DOI: 10.1186/s12915-023-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.
Collapse
Affiliation(s)
- Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiajia Gao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tian Wei
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
15
|
Wei Y, Geng W, Zhang T, He H, Zhai J. N-acetylcysteine rescues meiotic arrest during spermatogenesis in mice exposed to BDE-209. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50952-50968. [PMID: 36807852 DOI: 10.1007/s11356-023-25874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
Deca-bromodiphenyl ethers (BDE-209) has been widely used in electronic devices and textiles as additives to flame retardants. Growing evidence showed that BDE-209 exposure leads to poorer sperm quality and male reproductive dysfunction. However, the underlying mechanisms of BDE-209 exposure caused a decline in sperm quality remains unclear. This study aimed to evaluate the protective effects of N-acetylcysteine (NAC) on meiotic arrest in spermatocytes and decreased sperm quality in BDE-209-exposed mice. In the study, mice were treated with NAC (150 mg/kg BW) 2 h before administrated with BDE-209 (80 mg/kg BW) for 2 weeks. For the in vitro studies, spermatocyte cell line GC-2spd cells were pretreated with NAC (5 mM) 2 h before treated with BDE-209 (50 μM) for 24 h. We found that pretreatment with NAC attenuated the oxidative stress status induced by BDE-209 in vivo and in vitro. Moreover, pretreatment with NAC rescued the testicular histology impairment and decreased the testicular organ coefficient in BDE-209-exposed mice. In addition, NAC supplement partially promoted meiotic prophase and improved sperm quality in BDE-209-exposed mice. Furthermore, NAC pretreatment effectively improved DNA damage repair by recovering DMC1, RAD51, and MLH1. In conclusion, BDE-209 caused spermatogenesis dysfunction related to the meiotic arrest medicated by oxidative stress, decreasing sperm quality.
Collapse
Affiliation(s)
- Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
- Department of Health Supervision, Administrative Committee of Hefei Xinzhan High-Tech Industrial Development Zone, Wenzhong Rd 999, Hefei, 230000, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
16
|
Zhang X, Lin Q, Liao W, Zhang W, Li T, Li J, Zhang Z, Huang X, Zhang H. Identification of New Candidate Genes Related to Semen Traits in Duroc Pigs through Weighted Single-Step GWAS. Animals (Basel) 2023; 13:ani13030365. [PMID: 36766254 PMCID: PMC9913471 DOI: 10.3390/ani13030365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Semen traits play a key role in the pig industry because boar semen is widely used in purebred and crossbred pigs. The production of high-quality semen is crucial to ensuring a good result in artificial insemination. With the wide application of artificial insemination in the pig industry, more and more attention has been paid to the improvement of semen traits by genetic selection. The purpose of this study was to identify the genetic regions and candidate genes associated with semen traits of Duroc boars. We used weighted single-step GWAS to identify candidate genes associated with sperm motility, sperm progressive motility, sperm abnormality rate and total sperm count in Duroc pigs. In Duroc pigs, the three most important windows for sperm motility-sperm progressive motility, sperm abnormality rate, and total sperm count-explained 12.45%, 9.77%, 15.80%, and 12.15% of the genetic variance, respectively. Some genes that are reported to be associated with spermatogenesis, testicular function and male fertility in mammals have been detected previously. The candidate genes CATSPER1, STRA8, ZSWIM7, TEKT3, UBB, PTBP2, EIF2B2, MLH3, and CCDC70 were associated with semen traits in Duroc pigs. We found a common candidate gene, STRA8, in sperm motility and sperm progressive motility, and common candidate genes ZSWIM7, TEKT3 and UBB in sperm motility and sperm abnormality rate, which confirms the hypothesis of gene pleiotropy. Gene network enrichment analysis showed that STRA8, UBB and CATSPER1 were enriched in the common biological process and participated in male meiosis and spermatogenesis. The SNPs of candidate genes can be given more weight in genome selection to improve the ability of genome prediction. This study provides further insight into the understanding the genetic structure of semen traits in Duroc boars.
Collapse
Affiliation(s)
- Xiaoke Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing Lin
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weili Liao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjing Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Huang
- Guangdong Guyue Technology Co., Ltd. Guangzhou 510980, China
- Correspondence: (X.H.); (H.Z.)
| | - Hao Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.H.); (H.Z.)
| |
Collapse
|
17
|
Ito T, Ohta M, Osada A, Nishiyama A, Ishiguro KI, Tamura T, Sekita Y, Kimura T. Switching defective/sucrose non-fermenting chromatin remodeling complex coordinates meiotic gene activation via promoter remodeling and Meiosin activation in female germline. Genes Cells 2023; 28:15-28. [PMID: 36371617 DOI: 10.1111/gtc.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
In mammals, primordial germ cells (PGCs) enter meiosis and differentiate into primary oocytes in embryonic ovaries. Previously, we demonstrated that meiotic gene induction and meiotic initiation were impaired in female germline cells of conditional knockout (CKO) mice lacking the Smarcb1 (Snf5) gene, which encodes a core subunit of the switching defective/sucrose non-fermenting (SWI/SNF) complex. In this study, we classified meiotic genes expressed at lower levels in Snf5 CKO females into two groups based on promoter accessibility. The promoters of 74% of these genes showed lower accessibility in mutant mice, whereas those of the remaining genes were opened without the SWI/SNF complex. Notably, the former genes included Meiosin, which encodes a transcriptional regulator essential for meiotic gene activation. The promoters of the former and the latter genes were mainly modified with H3K27me3/bivalent and H3K4me3 histone marks, respectively. A subset of the former genes was precociously activated in female PGCs deficient in polycomb repressive complexes (PRCs). Our results point to a mechanism through which the SWI/SNF complex coordinates meiotic gene activation via the remodeling of PRC-repressed genes, including Meiosin, in female germline cells.
Collapse
Affiliation(s)
- Toshiaki Ito
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Chitose Laboratory Corp., Biotechnology Research Center, Kawasaki, Kanagawa, Japan
| | - Masami Ohta
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Atsuki Osada
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
18
|
Sex chromosomes in the tribe Cyprichromini (Teleostei: Cichlidae) of Lake Tanganyika. Sci Rep 2022; 12:17998. [PMID: 36289404 PMCID: PMC9606112 DOI: 10.1038/s41598-022-23017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Sex determining loci have been described on at least 12 of 22 chromosomes in East African cichlid fishes, indicating a high rate of sex chromosome turnover. To better understand the rates and patterns of sex chromosome replacement, we used new methods to characterize the sex chromosomes of the cichlid tribe Cyprichromini from Lake Tanganyika. Our k-mer based methods successfully identified sex-linked polymorphisms without the need for a reference genome. We confirm the three previously reported sex chromosomes in this group. We determined the polarity of the sex chromosome turnover on LG05 in Cyprichromis as ZW to XY. We identified a new ZW locus on LG04 in Paracyprichromis brieni. The LG15 XY locus in Paracyprichromis nigripinnis was not found in other Paracyprichromis species, and the sample of Paracyprichromis sp. "tembwe" is likely to be of hybrid origin. Although highly divergent sex chromosomes are thought to develop in a stepwise manner, we show two cases (LG05-ZW and LG05-XY) in which the region of differentiation encompasses most of the chromosome, but appears to have arisen in a single step. This study expands our understanding of sex chromosome evolution in the Cyprichromini, and indicates an even higher level of sex chromosome turnover than previously thought.
Collapse
|
19
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
20
|
Wei W, Tang X, Jiang N, Ni C, He H, Sun S, Yu M, Yu C, Qiu M, Yan D, Zhou Z, Song Y, Liu H, Zhao B, Lin X. Chromatin Remodeler Znhit1 Controls Bone Morphogenetic Protein Signaling in Embryonic Lung Tissue Branching. J Biol Chem 2022; 298:102490. [PMID: 36115458 PMCID: PMC9547297 DOI: 10.1016/j.jbc.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Branching morphogenesis is a key process essential for lung and other organ development in which cellular and tissue architecture branch out to maximize surface area. While this process is known to be regulated by differential gene expression of ligands and receptors, how chromatin remodeling regulates this process remains unclear. Znhit1, acting as a chromatin remodeler, has previously been shown to control the deposition of the histone variant H2A.Z. Here, we demonstrate that Znhit1 also plays an important role in regulating lung branching. Using Znhit1 conditional knockout mice, we show that Znhit1 deficiency in the embryonic lung epithelium leads to failure of branching morphogenesis and neonatal lethality, which is accompanied by reduced cell proliferation and increased cell apoptosis of the epithelium. The results from the transcriptome and the ChIP assay reveal that this is partially regulated by the derepression of Bmp4, encoding bone morphogenetic protein 4, which is a direct target of H2A.Z. Furthermore, we show that inhibition of BMP signaling by the protein inhibitor Noggin rescues the lung branching defects of Znhit1 mutants ex vivo. Taken together, our study identifies the critical role of Znhit1/H2A.Z in embryonic lung morphogenesis via the regulation of BMP signaling.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Xiaofang Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Ni
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua He
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuyue Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Hanmin Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China.
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
| |
Collapse
|
21
|
Liang Y, Huang X, Fang L, Wang M, Yu C, Guan Q. Effect of iodoacetic acid on the reproductive system of male mice. Front Pharmacol 2022; 13:958204. [PMID: 36091762 PMCID: PMC9461136 DOI: 10.3389/fphar.2022.958204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Iodoacetic acid (IAA) is one of the most common water disinfection byproducts (DBPs). Humans and animals are widely and continuously exposed to it. Many species of water DBPs are harmful to the reproductive system of organisms. Nevertheless, the potential effects of IAA exposure on testosterone and spermatogenesis in vivo remain ambiguous. Spermatogenous cells are the site of spermatogenesis, Leydig cells are the site of testosterone synthesis, and Sertoli cells build the blood–testis barrier (BTB), providing a stable environment for the aforementioned important physiological functions in testicular tissue. Therefore, we observed the effects of IAA on spermatogenic cells, Leydig cells, and Sertoli cells in the testis. In this study, we found that oral administration of IAA (35 mg/kg body weight per day for 28 days) in male mice increased serum LH levels and reduced sperm motility, affecting average path velocity and straight line velocity of sperm. In addition, IAA promoted the expression of γH2AX, a marker for DNA double-strand breaks. Moreover, IAA downregulated the protein expression of the scavenger receptor class B type 1 (SRB1), and decreased lipid droplet transport into Leydig cells, which reduced the storage of testosterone synthesis raw materials and might cause a drop in testosterone production. Furthermore, IAA did not affect the function of BTB. Thus, our results indicated that IAA exposure affected spermatogenesis and testosterone synthesis by inducing DNA damage and reducing lipid droplet transport.
Collapse
Affiliation(s)
- Yun Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
| | - Xinshuang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
| | - Li Fang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
| | - Mingjie Wang
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Inner Mongolia, China
| | - Chunxiao Yu
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Chunxiao Yu, ; Qingbo Guan,
| | - Qingbo Guan
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Chunxiao Yu, ; Qingbo Guan,
| |
Collapse
|
22
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|