1
|
Papachristoforou E, Kountouri A, Maratou E, Kouretas D, Skaperda Z, Tsoumani M, Efentakis P, Ikonomidis I, Lambadiari V, Makrilakis K. Association of Hypoglycemia with Biomarkers of Oxidative Stress and Antioxidants: An Observational Study. Healthcare (Basel) 2022; 10:healthcare10081509. [PMID: 36011166 PMCID: PMC9408616 DOI: 10.3390/healthcare10081509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoglycemia has been associated with complications from the vasculature. The contributing effects of oxidative stress (OS) on these actions have not been sufficiently studied, especially in daily, routine clinical practice. We examined the association of hypoglycemia encountered in daily clinical practice with biomarkers of OS and endogenous antioxidant activity in persons with diabetes [type 1 (T1D) or type 2 (T2D)], as well as individuals without diabetes, with a history of hypoglycemia. Several biomarkers of OS (MDA, ADMA, ox-LDL, 3-NT, protein carbonyls, 4-HNE, TBARS) and antioxidant capacity (TAC, superoxide scavenging capacity, hydroxyl radical scavenging capacity, reducing power, ABTS) were measured. Blood was drawn at the time of hypoglycemia detection and under euglycemic conditions on a different day. A total of 31 participants (mean age [±SD] 52.2 ± 21.1 years, 45.2% males) were included in the study. There were 14 (45.2%) persons with T2D, 12 (38.7%) with T1D, and 5 (16.1%) without diabetes. We found no differences in the examined biomarkers. Only TBARS, a biomarker of lipid peroxidation, showed lower values during hypoglycemia (p = 0.005). This finding needs confirmation in more extensive studies, given that MDA, another biomarker of lipid peroxidation, was not affected. Our study suggests that hypoglycemia encountered in daily clinical practice does not affect OS.
Collapse
Affiliation(s)
- Eleftheria Papachristoforou
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Kountouri
- Second Department of Internal Medicine, Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Eirini Maratou
- Laboratory of Clinical Biochemistry, Attikon University Hospital, 12462 Athens, Greece
| | - Dimitris Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-213-2061061; Fax: +30-213-2061794
| |
Collapse
|
2
|
Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res 2020; 2020:7489795. [PMID: 33123598 PMCID: PMC7585656 DOI: 10.1155/2020/7489795] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is defined as a disturbance in the prooxidant-antioxidant balance of the cell, in favor of the former, which results in the antioxidant capacity of the cell to be overpowered. Excess reactive oxygen species (ROS) production is very harmful to cell constituents, especially proteins, lipids, and DNA, thus causing damage to the cell. Oxidative stress has been associated with a variety of pathologic conditions, including diabetes mellitus (DM), cancer, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and accelerated aging. Regarding DM specifically, previous experimental and clinical studies have pointed to the fact that oxidative stress probably plays a major role in the pathogenesis and development of diabetic complications. It is postulated that hyperglycemia induces free radicals and impairs endogenous antioxidant defense systems through several different mechanisms. In particular, hyperglycemia promotes the creation of advanced glycation end-products (AGEs), the activation of protein kinase C (PKC), and the hyperactivity of hexosamine and sorbitol pathways, leading to the development of insulin resistance, impaired insulin secretion, and endothelial dysfunction, by inducing excessive ROS production and OS. Furthermore, glucose variability has been associated with OS as well, and recent evidence suggests that also hypoglycemia may be playing an important role in favoring diabetic vascular complications through OS, inflammation, prothrombotic events, and endothelial dysfunction. The association of these diabetic parameters (i.e., hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress will be reviewed here.
Collapse
Affiliation(s)
- Eleftheria Papachristoforou
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Unit and Diabetes Centre, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine, Research Unit and Diabetes Centre, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|