1
|
Jallod IMS, Abbas AK, Yaqoob FI, Aziz AAA. Bridging diabetes and cancer: harnessing biomarkers as dual sentinels for diagnosis, prognosis, and therapeutic advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04209-5. [PMID: 40387929 DOI: 10.1007/s00210-025-04209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
The complex two-way relationship between diabetes mellitus (DM) and cancer poses a significant global health challenge. Shared mechanisms such as hyperinsulinemia, chronic inflammation, and oxidative stress create an environment that fosters cancer development, increasing the risk for certain cancers in individuals with diabetes, including pancreatic, colorectal, breast, liver, and endometrial malignancies. In this context, biomarkers emerge as essential tools, offering a means to untangle the connections between these two conditions by providing insights into early detection, diagnosis, prognosis, and treatment monitoring. For diabetic patients, biomarkers are particularly valuable as they help differentiate between changes caused by cancer and those driven by metabolic imbalances, illuminating disease evolution. This review examines the unique challenges encountered by diabetic patients with cancer, emphasizing the contributions of targeted biomarkers in identifying cancer subtypes, predicting outcomes, and guiding treatment decisions. We explore organ-specific biomarker profiles across various cancers, including pancreatic, colorectal, breast, liver, and lung, highlighting their potential to enhance diagnostic precision and enable personalized treatment strategies. Ultimately, we aim to illustrate how a deeper understanding of biomarker signatures can inform innovative clinical approaches and improve care for patients facing the dual burden of diabetes and cancer.
Collapse
Affiliation(s)
| | | | - Faheemah Ismael Yaqoob
- College of Nursing, Department of Basic Science Nursing, University of Telafer, Telafer, Iraq
| | | |
Collapse
|
2
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
3
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
4
|
Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Mol Biol Rep 2021; 48:6525-6538. [PMID: 34379286 DOI: 10.1007/s11033-021-06635-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) or matrixins, are members of a zinc-dependent endopeptidase family. They cause remodeling of the extracellular matrix (ECM) leading to numerous diseases. MMPs subfamilies possess: collagenases, gelatinases, stromelysins and membrane-type MMPs (MT-MMP). They consist of several domains; pro-peptide, catalytic, linker peptide and the hemopexin (Hpx) domains. MMPs are involved in initiation, proliferation and metastasis of cancer through the breakdown of ECM physical barriers. Overexpression of MMPs is associated with poor prognosis of cancer. This review will discuss both types of MMPs and current inhibitors, which target them in different aspects, including, biosynthesis, activation, secretion and catalytic activity. Several synthetic and natural inhibitors of MMPs (MMPIs) that can bind the catalytic domain of MMPs have been designed including; peptidomimetic, non-peptidomimetic, tetracycline derivatives, off-target MMPI, natural products, microRNAs and monoclonal antibodies.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
5
|
Related Factors of Hepatocellular Carcinoma Recurrence Associated With Hyperglycemia After Liver Transplantation. Transplant Proc 2020; 53:177-192. [PMID: 33272654 DOI: 10.1016/j.transproceed.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recurrence of hepatocellular carcinoma (HCC) is the main factor affecting the prognosis of patients with HCC undergoing liver transplantation (LT). In this study, we investigated the influencing factors of tumor recurrence and survival after LT for HCC, especially the long-term correlation with elevated fasting blood glucose (FBG). METHODS Clinical data from 165 patients with HCC after LT in the General Hospital of Southern Theater Command of PLA between January 2013 and December 2016 were retrospectively analyzed. Disease-free survival (DFS) and overall survival (OS) rates, demographic characteristics, tumor characteristics, and surgical and postoperative data were evaluated. RESULTS Among 165 patients, 144 completed over 60 months of follow-up; the median follow-up period was more than 36 months. DFS rates were 76.97%, 51.52%, and 34.73% for 1, 3, and 5 years, respectively. The OS rate for 5 years was 40.28%. Independent risk factors for 1-year DFS were maximum tumor diameter >5 cm, age <49 years, and platelet transfusion. Independent risk factors for 3- and 5-year DFS were maximum tumor diameter >5 cm, capsular invasion, and FBG ≥6.1 mmol/L. Independent risk factors for OS were maximum tumor diameter >5 cm, capsular invasion, and FBG ≥6.1 mmol/L. CONCLUSION Elevated FBG after LT for HCC may promote medium- to long-term tumor recurrence and affect OS. Age <49 years, platelet transfusion, maximum tumor diameter, capsular invasion, and microvascular invasion in patients with HCC also impact survival and tumor recurrence after LT.
Collapse
|
6
|
Abd-Elbaset M, Mansour AM, Ahmed OM, Abo-Youssef AM. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1611-1624. [PMID: 32270258 DOI: 10.1007/s00210-020-01863-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Proliferation and apoptosis are two primary driving forces behind the pathogenesis of hepatocellular carcinoma (HCC). HCC is associated with Ki-67 and Bcl-2 overexpression, reduced Bax expression inducing disturbance of equilibrium between cellular proliferation and apoptosis, and exacerbated by reduced expression of PPAR-γ and FOXO-1. Our objective was to examine the mechanism by which the cyclic isoprenoid, β-ionone (βI), attenuated hepatocarcinogenesis and compare its possible anticancer activity with sorafenib (SF) as standard HCC treatment. HCC induction was achieved by supplying Wistar rats with 0.01% diethylnitrosamine (DENA) for 8 consecutive weeks by free access of drinking water. The effects of βI (160 mg/kg/day) administered orally were evaluated by biochemical, oxidative stress, macroscopical, and histopathological analysis. In addition, immunohistochemical assay for localization and expression of Bax and Bcl-2 and RT-PCR for expression levels of PPAR-γ, FOXO-1, and Ki-67 mRNA were performed. βI treatment significantly reduced the incidence, total number, and multiplicity of visible hepatocyte nodules, attenuated LPO, near-normal restoration of all cancer biomarkers, and antioxidant activities, indicating the chemotherapeutic impact of βI. Histopathological analysis of the liver confirmed that further. βI also induced pro-apoptotic protein Bax expression and reduced anti-apoptotic expression of Bcl-2 protein. Moreover, βI induced mRNA expression of tumor suppressor genes (PPAR-γ and FOXO-1) and decreased proliferative marker Ki-67 mRNA expression. For the first time, the present study provides evidence that βI exerts a major anticancer effect on DENA-induced HCC, at least in part, through inhibition of cell proliferation, oxidative stress, and apoptogenic signal induction mediated by downregulation of Bcl-2 and upregulation of Bax, PPAR-γ, and FOXO-1 expressions.
Collapse
Affiliation(s)
- Mohamed Abd-Elbaset
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt.
| | - Ahmed M Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt
| |
Collapse
|
7
|
Abdel-Hamid NM, Abass SA, Mohamed AA, Muneam Hamid D. Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 2018; 107:1246-1258. [PMID: 30257339 PMCID: PMC7127621 DOI: 10.1016/j.biopha.2018.08.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the most frequent tumor that associated with high mortality rate. Several risk factors contribute to the pathogenesis of HCC, such as chronic persistent infection with hepatitis C virus or hepatitis B virus, chronic untreated inflammation of liver with different etiology, oxidative stress and fatty liver disease. Several treatment protocols are used in the treatment of HCC but they also associated with diverse side effects. Many natural products are helpful in the co-treatment and prevention of HCC. Several mechanisms are involved in the action of these herbal products and their bioactive compounds in the prevention and co-treatment of HCC. They can inhibit the liver cancer development and progression in several ways as protecting against liver carcinogens, enhancing effects of chemotherapeutic drugs, inhibiting tumor cell growth and metastasis, and suppression of oxidative stress and chronic inflammation. In this review, we will discuss the utility of diverse natural products in the prevention and co-treatment of HCC, through its capturing of the common risk factors known to lead to HCC and shed the light on their possible mechanisms of action. Our theory assumes that shutting down the risk factor to cancer development pathways is a critical strategy in cancer prevention and management. We recommend the use of these plants side by side to recent chemical medications and after stopping these chemicals, as a maintenance therapy to avoid HCC progression and decrease its global incidence.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahmed A Mohamed
- Biochemistry Department, Faculty of Pharmacy, Mansura University, Mansura, Egypt
| | - Daniah Muneam Hamid
- Biotechnology Department, Technical Medical Institute Al-Mansour, Middle Technological University, Baghdad, Iraq
| |
Collapse
|
8
|
Hodgson JA, Seyler TH, Wang L. Long-Term Stability of Volatile Nitrosamines in Human Urine. J Anal Toxicol 2016; 40:414-8. [PMID: 27274026 DOI: 10.1093/jat/bkw038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Volatile nitrosamines (VNAs) are established teratogens and carcinogens in animals and classified as probable (group 2A) and possible (group 2B) carcinogens in humans by the IARC. High levels of VNAs have been detected in tobacco products and in both mainstream and sidestream smoke. VNA exposure may lead to lipid peroxidation and oxidative stress (e.g., inflammation), chronic diseases (e.g., diabetes) and neurodegenerative diseases (e.g., Alzheimer's disease). To conduct epidemiological studies on the effects of VNA exposure, short-term and long-term stabilities of VNAs in the urine matrix are needed. In this report, the stability of six VNAs (N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitrosopiperidine, N-nitrosopyrrolidine and N-nitrosomorpholine) in human urine is analyzed for the first time using in vitro blank urine pools fortified with a standard mixture of all six VNAs. Over a 24-day period, analytes were monitored in samples stored at ∼20°C (collection temperature), 4-10°C (transit temperature) and -20 and -70°C (long-term storage temperatures). All six analytes were stable for 24 days at all temperatures (n = 15). The analytes were then analyzed over a longer time period at -70°C; all analytes were stable for up to 1 year (n = 62). A subset of 44 samples was prepared as a single batch and stored at -20°C, the temperature at which prepared samples are stored. These prepared samples were run in duplicate weekly over 10 weeks, and all six analytes were stable over the entire period (n = 22).
Collapse
Affiliation(s)
- James A Hodgson
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Tiffany H Seyler
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lanqing Wang
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
9
|
Hodgson JA, Seyler TH, McGahee E, Arnstein S, Wang L. A New Automated Method and Sample Data Flow for Analysis of Volatile Nitrosamines in Human Urine. ACTA ACUST UNITED AC 2016; 7:165-178. [PMID: 26949569 PMCID: PMC4770837 DOI: 10.4236/ajac.2016.72014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and sidestream smoke. Our laboratory monitors six urinary VNAs-N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)-using isotope dilution GC-MS/MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR™ and Caliper Staccato™ workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.
Collapse
Affiliation(s)
- James A Hodgson
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA ; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, USA
| | - Tiffany H Seyler
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ernest McGahee
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Stephen Arnstein
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Lanqing Wang
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
10
|
Suman S, Shukla Y. Diallyl Sulfide and Its Role in Chronic Diseases Prevention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:127-144. [PMID: 27771923 DOI: 10.1007/978-3-319-41342-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diallyl sulfide (C6H10S, DAS) is one of the novel natural organosulfur compounds, which is mostly obtained from the genus Allium plants. Numerous studies have revealed several unique properties of DAS in terms of its health-promoting effects. DAS has proved to be anticancer, antimicrobial, anti-angiogenic, and immunomodulatory like unique functions as demonstrated by the multiple investigations. Diallyl sulfide can also impede oxidative stress and chronic inflammation as suggested by the literature. Studies also explored that DAS could thwart the development of chronic diseases like cancer, neuronal, cardiovascular disease through modulating mechanistic pathways involved in pathogenesis. In this book chapter, we have attempted to give the comprehensive view on DAS about the physiochemical and biological properties, and its preventive role in chronic diseases with a mechanistic overview.
Collapse
Affiliation(s)
- Shankar Suman
- Food, Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research, 31, Vish Vigyan Bhawan, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Food, Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research, 31, Vish Vigyan Bhawan, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
11
|
Glycoregulatory Enzymes as Early Diagnostic Markers during Premalignant Stage in Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2013. [DOI: 10.12691/ajcp-1-2-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
Stress is an important factor for many diseases in living metabolisms. The mini pathway named as polyol is a critical junction for stress factors. This pathway has two enzymes: aldose reductase (AR) and sorbitol dehydrogenase (SDH). It is linked with some diseases such as diabetes mellitus and some cancer types. In particular, SDH is very sensitive and unstable in in vitro conditions. In this study, SDH was purified by using simple and rapid chromatographic methods such as DEAE-Sephadex and CM-Sephadex C-50 columns. Subunit and active form molecular weights were found as 39.8 kDa and 150 kDa, respectively. The in vitro effects of some antineoplastic drugs were investigated. IC(50) values were 0.025, 0.081, 0.291, 1.62, 4.86, 6.54 mM for dacarbazine, methotrexate, epirubicin hydrochloride, calcium folinate, gemcitabine hydrochloride, oxaliplatin, respectively. From these results, dacarbazine was lowest IC(50) value and it is the strongest inhibitor for liver SDH enzyme activity compared to the other drugs.
Collapse
Affiliation(s)
- Zuhal Alim
- Atatürk University, Faculty of Sciences, Department of Chemistry, Biochemistry Division, 25240, Turkey-Erzurum
| | | |
Collapse
|
13
|
Abdel-Hamid NM, Nazmy MH, Mahmoud AW, Fawzy MA, Youssof M. A survey on herbal management of hepatocellular carcinoma. World J Hepatol 2011; 3:175-183. [PMID: 21866249 PMCID: PMC3158906 DOI: 10.4254/wjh.v3.i7.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 02/06/2023] Open
Abstract
In this review we outline the different mechanisms mediating hepatocarcinogenesis. We also discuss possible targets of bioactive herbal agents at different stages of hepatocarcinogenesis and highlight their role at each individual stage. We gathered information on the most common herbal prescriptions and extracts thought to be useful in prevention or sensitization for chemotherapy in management of hepatocellular carcinoma (HCC). The value of this topic may seem questionable compared to the promise offered for HCC management by chemotherapy and radiation. However, we would recommend the use of herbal preparations not as alternatives to common chemo /and or radiotherapy, but rather for prevention among at-risk individuals, given that drug/herb interactions are still in need of extensive clarification. The bioactive constituents of various herbs seem to be promising targets for isolation, cancer activity screening and clinical evaluation. Finally, herbal preparations may offer a cost effective protective alternative to individuals known to have a high risk for HCC and possibly other cancers, through maintaining cell integrity, reversing oxidative stress and modulating different molecular pathways in preventing carcinogenesis.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Nabil Mohie Abdel-Hamid, Maiiada Hasan Nazmy, Ahmed Wahid Mahmoud, Michael Atef Fawzy, Marco Youssof, Biochemistry Department, Unit of Liver cancer research, Faulty of Pharmacy, Minia University, Minia 002086, Egypt
| | | | | | | | | |
Collapse
|