1
|
Chao L, Li J, Zhang Y, Pu H, Yan X. Application of next generation sequencing-based rapid detection platform for microbiological diagnosis and drug resistance prediction in acute lower respiratory infection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1644. [PMID: 33490156 PMCID: PMC7812213 DOI: 10.21037/atm-20-7081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Acute lower respiratory infections (ALRIs) have a high mortality rate. We aimed to apply a platform that rapidly detects 36 microorganisms and 49 antibiotic resistance markers in the clinical diagnosis of ALRI and drug resistance prediction. Methods Multicenter collection of clinical samples from patients with ALRIs was carried out from 2017 to 2018. Sputum culture (SC) was performed, which provided two outcomes: the detected pathogens and the resistance to different antibiotics. Additionally, each sputum sample was used to extract deoxyribonucleic acids (DNAs) followed by high-throughput sequencing. Results Eleven commonly observed pathogens were surveyed, and for all samples with positive SC results (137 cases), the overall coverage was 95.62% according to the sequencing results. The receiver operating characteristic (ROC) curve was drawn, and cutoff reads of the most frequently detected pathogens were acquired. Overall, sequencing exhibited significantly higher sensitivity in the detection of pathogens compared with the traditional SC method, with a generally satisfactory specificity. Furthermore, we investigated the correlation between antibiotic resistance gene phenotypes and the actual outcomes of the drug sensitivity test, and some significant correlations were found, especially for the resistance to Amikacin in the presence of blaOXA7. Conclusions Sequencing-based sputum metagenomics can reveal a profile of the lung pathogen microbiome. The sequencing method offers both sufficient accuracy and significantly higher sensitivity in the detection of pathogens, and can be at least a complementary approach to traditional SC reporting. The sequencing technique also revealed some novel potential correlations between the presence of different pathogens, as well as new antimicrobial-resistant genes.
Collapse
Affiliation(s)
- Lingshan Chao
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jihong Li
- Department of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya'nan Zhang
- Department of Science and Technology, Shanghai Pathogeno Medical Technology Co., Ltd., Shanghai, China
| | - Hao Pu
- Department of Science and Technology, Shanghai Pathogeno Medical Technology Co., Ltd., Shanghai, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Rowneki M, Aronson N, Du P, Sachs P, Blakemore R, Chakravorty S, Levy S, Jones AL, Trivedi G, Chebore S, Addo D, Byarugaba DK, Njobvu PD, Wabwire-Mangen F, Erima B, Ramos ES, Evans CA, Hale B, Mancuso JD, Alland D. Detection of drug resistant Mycobacterium tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PLoS One 2020; 15:e0232343. [PMID: 32384098 PMCID: PMC7209238 DOI: 10.1371/journal.pone.0232343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Drug susceptibility testing for Mycobacterium tuberculosis (MTB) is difficult to perform in resource-limited settings where Acid Fast Bacilli (AFB) smears are commonly used for disease diagnosis and monitoring. We developed a simple method for extraction of MTB DNA from AFB smears for sequencing-based detection of mutations associated with resistance to all first and several second-line anti-tuberculosis drugs. METHODS We isolated MTB DNA by boiling smear content in a Chelex solution, followed by column purification. We sequenced PCR-amplified segments of the rpoB, katG, embB, gyrA, gyrB, rpsL, and rrs genes, the inhA, eis, and pncA promoters and the entire pncA gene. RESULTS We tested our assay on 1,208 clinically obtained AFB smears from Ghana (n = 379), Kenya (n = 517), Uganda (n = 262), and Zambia (n = 50). Coverage depth varied by target and slide smear grade, ranging from 300X to 12000X on average. Coverage of ≥20X was obtained for all targets in 870 (72%) slides overall. Mono-resistance (5.9%), multi-drug resistance (1.8%), and poly-resistance (2.4%) mutation profiles were detected in 10% of slides overall, and in over 32% of retreatment and follow-up cases. CONCLUSION This rapid AFB smear DNA-based method for determining drug resistance may be useful for the diagnosis and surveillance of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Mazhgan Rowneki
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail: (DA); (MR)
| | - Naomi Aronson
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Peicheng Du
- Office of Advanced Research Computing, Rutgers University, Newark, New Jersey, United States of America
| | - Paige Sachs
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Robert Blakemore
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Soumitesh Chakravorty
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Shawn Levy
- Genomics Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Angela L. Jones
- Genomics Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Geetika Trivedi
- Genomics Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Sheilla Chebore
- Kenya Medical Research Institute, U.S. Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Dennis Addo
- Ghana Armed Forces Tuberculosis Control Program, 37 Military Hospital, Accra, Ghana
| | | | | | | | - Bernard Erima
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Eric S. Ramos
- Innovation For Health And Development, Laboratory for Research and Development (IFHAD), Universidad Peruana Cayetano Heredia, Lima, Peru
- Innovacion Por la Salud Y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| | - Carlton A Evans
- Innovation For Health And Development, Laboratory for Research and Development (IFHAD), Universidad Peruana Cayetano Heredia, Lima, Peru
- Infectious Diseases & Immunity, Wellcome Trust Imperial College Centre for Global Health Research, London, United Kingdom
| | - Braden Hale
- Naval Health Research Center, Defense Health Agency, San Diego, California, United States of America
- University of California San Diego, La Jolla, California, United States of America
| | - James D. Mancuso
- Armed Forces Health Surveillance Branch, Silver Spring, Maryland, United States of America
| | - David Alland
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail: (DA); (MR)
| |
Collapse
|
5
|
Maschmann RDA, Verza M, Silva MS, Sperhacke RD, Ribeiro MO, Suffys PN, Gomes HM, Tortoli E, Marcelli F, Zaha A, Rossetti MLR. Detection of rifampin-resistant genotypes in Mycobacterium tuberculosis by reverse hybridization assay. Mem Inst Oswaldo Cruz 2011; 106:139-45. [PMID: 21537671 DOI: 10.1590/s0074-02762011000200004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/24/2010] [Indexed: 11/21/2022] Open
Abstract
We used a colorimetric reverse dot blot hybridization (CRDH) assay to detect the presence of mutations in a specific region of the rpoB gene, associated with rifampin (RIF) resistance, in a panel of 156 DNAs extracted from 103 RIF-sensitive and 53 RIF-resistant cultures of Mycobacterium tuberculosis. When compared with the antimicrobial susceptibility test (AST), the sensitivity and specificity of the CRDH were 92.3% and 98.1%, respectively. When compared with sequencing, the sensitivity and specificity of the CRDH were 90.6% and 100%, respectively. To evaluate the performance of the assay directly in clinical specimens, 30 samples from tuberculosis patients were used. For these samples, the results of the CRDH were 100% consistent with the results of the AST and sequencing. These results indicate that the rate of concordance of the CRDH is high when compared to conventional methods and sequencing data. The CRDH can be successfully applied when a rapid test is required for the identification of RIF resistance in M. tuberculosis.
Collapse
|
6
|
DNA extracted from stained sputum smears can be used in the MTBDRplus assay. J Clin Microbiol 2011; 49:3600-3. [PMID: 21832013 DOI: 10.1128/jcm.00745-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the feasibility of using DNA extracted from stained sputum smears for the detection of rifampin and isoniazid resistance with the commercial MTBDRplus assay from Hain Lifescience GmbH, Nehren, Germany. Overall sensitivity was initially low (70.0%) but increased to 96.7% when a multiplex PCR preamplification step was added. We then tested stored Mycobacterium tuberculosis-positive stained smears prepared from 297 patients' sputum samples. Species identification and drug susceptibility testing (DST) had been performed at the Institut Pasteur de Madagascar. Overall, the performance of the MTBDRplus assay applied to slide DNA was similar to that obtained in other studies with DNA extracted from clinical specimens. With the ready availability of stained smears in routine diagnostic laboratories and their easy transport and storage at room temperature, this approach should be useful for optimizing the treatment of multidrug-resistant tuberculosis and for conducting resistance surveys aimed at identifying hot-spot regions and breaking chains of transmission.
Collapse
|
7
|
Ereqat S, Bar-Gal GK, Nasereddin A, Said S, Greenblatt CL, Azmi K, Qaddomi SE, Spigelman M, Ramlawi A, Abdeen Z. Pulmonary tuberculosis in the West Bank, Palestinian Authority: molecular diagnostic approach. Trop Med Int Health 2010; 16:360-7. [DOI: 10.1111/j.1365-3156.2010.02697.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Verza M, Maschmann RDA, Silva MSN, Dalla Costa ER, Ribeiro MO, Rosso F, Suffys PN, Tortoli E, Marcelli F, Zaha A, Rossetti MLR. In house colorimetric reverse hybridisation assay for detection of the mutation most frequently associated with resistance to isoniazid in Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz 2010; 104:710-4. [PMID: 19820830 DOI: 10.1590/s0074-02762009000500008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 06/26/2009] [Indexed: 11/22/2022] Open
Abstract
Mutations in the katG gene have been identified and correlated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The mutation AGC-->ACC (Ser-->Thr) at katG315 has been reported to be the most frequent and is associated with transmission and multidrug resistance. Rapid detection of this mutation could therefore improve the choice of an adequate anti-tuberculosis regimen, the epidemiological monitoring of INH resistance and, possibly, the tracking of transmission of resistant strains. An in house reverse hybridisation assay was designed in our laboratory and evaluated with 180 isolates of M. tuberculosis. It could successfully characterise the katG315 mutation in 100% of the samples as compared to DNA sequencing. The test is efficient and is a promising alternative for the rapid identification of INH resistance in regions with a high prevalence of katG315 mutants.
Collapse
Affiliation(s)
- Mirela Verza
- Centro de Desenvolvimento Científico e Tecnológico, Fundação Estadual de Produção e Pesquisa em Saúde, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|