1
|
Petrova LP, Yevstigneyeva SS, Borisov IV, Shelud'ko AV, Burygin GL, Katsy EI. Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245. J Basic Microbiol 2020; 60:613-623. [PMID: 32378235 DOI: 10.1002/jobm.201900635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
The facultative plant endophyte Azospirillum brasilense Sp245 synthesizes two high-molecular-weight lipopolysaccharides, LPSI and LPSII, which comprise identical d-rhamnan O-polysaccharides and, presumably different core oligosaccharides. Previously, using random insertion mutagenesis, we constructed the LpsII- mutant KM139 of strain Sp245 that possessed an Omegon-Km insertion in plasmid AZOBR_p6. Here, we found that in KM139, Omegon-Km disrupted the coding sequence AZOBR_p60126 for a putative glycosyltransferase related to mannosyltransferases and rhamnosyltransferases. To verify its function, we cloned the AZOBR_p60126 gene of strain Sp245 in the expression vector plasmid pRK415 and transferred the construct pRK415-p60126 into KM139. In the complemented mutant KM139 (pRK415-p60126), the wild-type LPSI+ LPSII+ profile was recovered. We also compared the swimming and swarming motilities of strains Sp245, Sp245 (pRK415), KM139, KM139 (pRK415), and KM139 (pRK415-p60126). All these strains had the same flagellar-dependent swimming speeds, but on soft media, the LpsI+ LpsII- strains KM139 and KM139 (pRK415) swarmed significantly faster than the other LpsI+ LpsII+ strains. Such interstrain differences in swarming motility were more pronounced on 0.4% than on 0.5% soft agar plates. These data show that the AZOBR_p60126-encoded putative glycosyltransferase significantly affects the lipopolysaccharide profile and, as a consequence, the social motility of azospirilla.
Collapse
Affiliation(s)
- Lilia P Petrova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Stella S Yevstigneyeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Igor V Borisov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Andrei V Shelud'ko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Elena I Katsy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
2
|
Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions. World J Microbiol Biotechnol 2019; 35:19. [PMID: 30656428 DOI: 10.1007/s11274-019-2594-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Bacteria Azospirillum brasilense may swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf). They also construct sessile biofilms on various interfaces. As compared to the wild-type strain Sp245, the previously characterized Fla- Laf- flhB1 mutant Sp245.1063 accumulated less biomass in mature biofilms, which also were susceptible to the forces of hydrodynamic shear. In this study, we compared biofilms formed by strain Sp245 and its previously constructed derivatives on the interfaces between a minimal (malate-salt medium, or MSM) or rich (LB) liquid growth medium and a hydrophilic (glass) or hydrophobic (polystyrene) solid surface under static or dynamic conditions. In all experimental settings, the alterations in Sp245.1063's mature biofilm traits were partially (in MSM) or completely (in LB) rescued in the complemented mutant Sp245.1063 (pRK415-150177), which received the pRK415-borne coding sequence for the putative FlhB1 protein of the flagellar type III secretion system. Although Laf were not found in the biofilms of azospirilla, Fla was present on the biofilm cells of the complemented mutant Sp245.1063 (pRK415-150177) and other studied strains, which had normal flagellation on liquid and solid nutritional media. Accordingly, mature biofilms of these strains contained more biomass and were significantly more resistant to shaking at 140 rpm, as compared to the biofilms of the flagella-free mutant bacteria. These data proved that the polar flagellum of A. brasilense Sp245 plays a significant positive role in biofilm biomass increase and in biofilm stabilization.
Collapse
|
3
|
Stylianakis A, Schinas G, Thomaidis PC, Papaparaskevas J, Ziogas DC, Gamaletsou MN, Daikos GL, Pneumaticos S, Sipsas NV. Combination of conventional culture, vial culture, and broad-range PCR of sonication fluid for the diagnosis of prosthetic joint infection. Diagn Microbiol Infect Dis 2018; 92:13-18. [PMID: 30099992 DOI: 10.1016/j.diagmicrobio.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
We assessed the value of conventional culture, vial culture, and broad-range PCR of the sonication fluid (SF), individually or in combinations, for the diagnosis of prosthetic joint infection (PJI). We studied 114 consecutive patients (median age:72.5 years, males: 28.07%) undergoing removal of a total knee or hip prosthesis. By non-microbiologic criteria, 87 patients had aseptic failure, and 27 PJI. All patients had periprosthetic tissue culture, sonication of prosthesis, and study of SF by conventional and vial culture, and PCR. Compared to tissue culture, each test was significantly more sensitive and less specific. If only one test was positive, the sensitivity was 88.46% and specificity 64.29%. If all three SF tests were positive, sensitivity, and NPV were decreasing (34.6% and 80.23%), but specificity and PPV were increasing up to 98.57% and 90.9%, respectively, outperforming tissue culture. A triple negative test practically excluded PJI.
Collapse
Affiliation(s)
- Antonios Stylianakis
- Laboratory of Implant Associated Infections, Department of Microbiology, "KAT" General Hospital, Athens, Greece
| | - Georgios Schinas
- 3(rd) Department of Orthopaedic Surgery, "KAT" General Hospital and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pavlos C Thomaidis
- Laboratory of Implant Associated Infections, Department of Microbiology, "KAT" General Hospital, Athens, Greece
| | - Joseph Papaparaskevas
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios C Ziogas
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria N Gamaletsou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George L Daikos
- First Department of Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Pneumaticos
- 3(rd) Department of Orthopaedic Surgery, "KAT" General Hospital and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos V Sipsas
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Filip’echeva YA, Shelud’ko AV, Prilipov AG, Burygin GL, Telesheva EM, Yevstigneyeva SS, Chernyshova MP, Petrova LP, Katsy EI. Plasmid AZOBR_p1-borne fabG gene for putative 3-oxoacyl-[acyl-carrier protein] reductase is essential for proper assembly and work of the dual flagellar system in the alphaproteobacterium Azospirillum brasilense Sp245. Can J Microbiol 2018; 64:107-118. [DOI: 10.1139/cjm-2017-0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella. In an immotile leaky Fla− Laf− fabG1::Omegon-Km mutant, Sp245.1610, defects in flagellation and motility were fully complemented by expressing the CDS AZOBR_p1160043 from plasmid pRK415. When pRK415 with the cloned CDS AZOBR_p1160045 (fliC) for a putative 65.2 kDa Sp245 Fla flagellin was transferred into the Sp245.1610 cells, the bacteria also became able to assemble a motile single flagellum. Some cells, however, had unusual swimming behavior, probably because of the side location of the organelle. Although the assembly of Laf was not restored in Sp245.1610 (pRK415-p1160045), this strain was somewhat capable of swarming motility. We propose that the putative 3-oxoacyl-[ACP] reductase encoded by the CDS AZOBR_p1160043 plays a role in correct flagellar location in the cell envelope and (or) in flagellar modification(s), which are also required for the inducible construction of Laf and for proper swimming and swarming motility of A. brasilense Sp245.
Collapse
Affiliation(s)
- Yulia A. Filip’echeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Andrei V. Shelud’ko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Alexei G. Prilipov
- Gamaleia National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamalei, 16, 123098 Moscow, Russia
| | - Gennady L. Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
- Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad, 1, 410012 Saratov, Russia
| | - Elizaveta M. Telesheva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Stella S. Yevstigneyeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Marina P. Chernyshova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Lilia P. Petrova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Elena I. Katsy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| |
Collapse
|