1
|
Monistero V, Vicari N, Prati P, Bragoni R, Gazzola A, Sala L, Maisano A, Moroni P, Bronzo V, Luini MV, Castiglioni B, Cremonesi P. A rapid and reliable method for early Legionella pneumophila identification and characterization in support of the epidemiology study. Front Microbiol 2024; 15:1452861. [PMID: 39439937 PMCID: PMC11495126 DOI: 10.3389/fmicb.2024.1452861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Legionnaires' disease is a severe pneumonia predominantly caused by Legionella pneumophila (Lp), whose major reservoirs are artificial water systems. As most human infections are caused by L. pneumophila serogroup 1 (Lp1), a reliable method for Lp distinction can be crucial for bacterial spread prevention. As the ability to withstand in environments and to cause the waterborne disease is strongly related to specific genes, the identification of virulent strains can be of great relevance to implement water environmental monitoring and to contain harmful outbreaks to public health. We aimed to test an assay for Lp identification among different Legionella species, and to determine the serogroups. Additionally, we investigated the carriage of virulence and antimicrobial resistance genes. Methods A total of 90 Legionella spp. isolates identified by phenotypic tests were subjected to the designed quantitative PCR assay targeting specific mip for Lp, wzm for Lp1, pvcA and ahpD for biofilm production. Eleven serogroups were investigated in all our isolates tested positive for mip gene, subsequently analyzed for 12 virulence and 8 antimicrobial resistance genes. Results Only the 70 Lp isolates were positive for mip. Out of 27 Lp isolates belonging to serogroup 1 based on agglutination test, 23 (85.2%) carried wzm. The presence of ahpD and pvcA was found in 94.3 and 98.6% of Lp isolates, respectively. By multiplex PCR, all 23 wzm-positive strains were confirmed as serogroup 1 that was the most predominant (33%). At least one virulence gene was detected in all Lp isolates. The most frequent gene was ispE (100%), followed by issD (96%), icmK and enhC (93%), cpxA (91%), rtxA2 (74%), lvhB8-B9 (61%), and prpA (54%). The other genes were less diffused in Lp strains (rtxA1, 44%; lvhB3-B4, 47%; pvcB, 27%; lvrE, 24%). Of the macrolide resistance genes, the ereA was found in 84% of Lp strains, while only 14 (20%) harbored the lpeAB among the efflux pump genes. Conclusion The assays validated in this study enable the simultaneous Lp and Lp1 detection. The differentiation of Lp strains according to their virulence properties could be useful to predict the bacterial ability to survive and to cause the disease.
Collapse
Affiliation(s)
- Valentina Monistero
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| | - Nadia Vicari
- Diagnostic Section of Pavia, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Pavia, Italy
| | - Paola Prati
- Diagnostic Section of Pavia, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Pavia, Italy
| | - Roldano Bragoni
- Diagnostic Section of Pavia, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Pavia, Italy
| | - Alessandra Gazzola
- Diagnostic Section of Lodi, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Lodi, Italy
| | - Lorenza Sala
- Diagnostic Section of Lodi, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Lodi, Italy
| | - Antonio Maisano
- Diagnostic Section of Lodi, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Lodi, Italy
| | - Paolo Moroni
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| | - Valerio Bronzo
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| | - Mario Vittorio Luini
- Institute of Agricultural Biology and Biotechnology – IBBA-CNR, National Research Council, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology – IBBA-CNR, National Research Council, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology – IBBA-CNR, National Research Council, Lodi, Italy
| |
Collapse
|
2
|
Gattuso G, Rizzo R, Lavoro A, Spoto V, Porciello G, Montagnese C, Cinà D, Cosentino A, Lombardo C, Mezzatesta ML, Salmeri M. Overview of the Clinical and Molecular Features of Legionella Pneumophila: Focus on Novel Surveillance and Diagnostic Strategies. Antibiotics (Basel) 2022; 11:370. [PMID: 35326833 PMCID: PMC8944609 DOI: 10.3390/antibiotics11030370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is one of the most threatening nosocomial pathogens. The implementation of novel and more effective surveillance and diagnostic strategies is mandatory to prevent the occurrence of legionellosis outbreaks in hospital environments. On these bases, the present review is aimed to describe the main clinical and molecular features of L. pneumophila focusing attention on the latest findings on drug resistance mechanisms. In addition, a detailed description of the current guidelines for the disinfection and surveillance of the water systems is also provided. Finally, the diagnostic strategies available for the detection of Legionella spp. were critically reviewed, paying the attention to the description of the culture, serological and molecular methods as well as on the novel high-sensitive nucleic acid amplification systems, such as droplet digital PCR.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Vincenzoleo Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Concetta Montagnese
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| |
Collapse
|
3
|
Morales A, Mathur-Wagh U, Tran A, Cui I, DeSimone RA, Jenkins SG, Westblade LF, Jones S. Cavitary Pulmonary Nodules in an Immunocompromised Patient With Urothelial Carcinoma of the Bladder. Clin Infect Dis 2019; 67:1631-1634. [PMID: 30376101 PMCID: PMC7448926 DOI: 10.1093/cid/ciy270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ayana Morales
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York
| | - Usha Mathur-Wagh
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York
| | - Anthony Tran
- New York City Department of Health and Mental Hygiene, New York
| | - Isabelle Cui
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York
| | - Robert A DeSimone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York
| | - Stephen G Jenkins
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York
| | - Lars F Westblade
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York
| | - Sian Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York
| |
Collapse
|
4
|
Quero S, Párraga-Niño N, Sabria M, Barrabeig I, Sala MR, Jané M, Mateu L, Sopena N, Pedro-Botet ML, Garcia-Nuñez M. Legionella SBT applied directly to respiratory samples as a rapid molecular epidemiological tool. Sci Rep 2019; 9:623. [PMID: 30679570 PMCID: PMC6346096 DOI: 10.1038/s41598-018-36924-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022] Open
Abstract
Legionnaires' disease (LD) is an atypical pneumonia caused by the inhalation of Legionella. The methods used for the diagnosis of LD are direct culture of respiratory samples and urinary antigen detection. However, the sensitivity of culture is low, and the urinary antigen test is specific only for L. pneumophila sg1. Moreover, as no isolates are obtained, epidemiological studies cannot be performed. The implementation of Nested-sequence-based typing (Nested-SBT) makes it possible to carry out epidemiological studies while also confirming LD, especially in cases caused by non-sg 1. Sixty-two respiratory samples from patients with Legionella clinically confirmed by positive urinary antigen tests were cultured and tested by Nested-SBT, following the European Study Group for Legionella Infections (ESGLI) protocol. Only 2/62 (3.2%) respiratory samples were culture-positive. Amplification and sequencing of Nested-SBT genes were successfully performed in 57/62 samples (91.9%). The seven target genes were characterised in 39/57 (68.4%) respiratory samples, and the complete sequence type (ST) was obtained. The mip gene was the most frequently amplified and sequenced. Nested-SBT is a useful method for epidemiological studies in culture-negative samples, achieving a 28.7-fold improvement over the results of culture studies and reducing the time needed to obtain molecular epidemiological results.
Collapse
Affiliation(s)
- Sara Quero
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - Noemí Párraga-Niño
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Miquel Sabria
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. .,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain. .,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Irene Barrabeig
- Vigilància Epidemiològica i Resposta a Emergències de Salut Pública, Agencia de Salut Pública de Catalunya, Barcelona, Spain
| | - Maria Rosa Sala
- Vigilància Epidemiològica i Resposta a Emergències de Salut Pública, Agencia de Salut Pública de Catalunya, Barcelona, Spain
| | - Mireia Jané
- Vigilància Epidemiològica i Resposta a Emergències de Salut Pública, Agencia de Salut Pública de Catalunya, Barcelona, Spain
| | - Lourdes Mateu
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Nieves Sopena
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Luisa Pedro-Botet
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marian Garcia-Nuñez
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. .,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain. .,Hospital Universitari Parc Taulí, Sabadell, Spain.
| |
Collapse
|
5
|
Dunne WM, Picot N, van Belkum A. Laboratory Tests for Legionnaire’s Disease. Infect Dis Clin North Am 2017; 31:167-178. [DOI: 10.1016/j.idc.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
|
7
|
Cross KE, Mercante JW, Benitez AJ, Brown EW, Diaz MH, Winchell JM. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay. Diagn Microbiol Infect Dis 2016; 85:295-301. [PMID: 27107536 PMCID: PMC5505572 DOI: 10.1016/j.diagmicrobio.2016.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 10/27/2022]
Abstract
Legionnaires' disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80-90%), other species have also been reported to cause disease. However, little is known about Legionnaires' disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5'-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease.
Collapse
Affiliation(s)
- Kristen E Cross
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Alvaro J Benitez
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Ellen W Brown
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Maureen H Diaz
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|