1
|
Xiong XS, Zhang XD, Yan JW, Huang TT, Liu ZZ, Li ZK, Wang L, Li F. Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques. Infect Drug Resist 2024; 17:1491-1506. [PMID: 38628245 PMCID: PMC11020249 DOI: 10.2147/idr.s457308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication.
Collapse
Affiliation(s)
- Xue-Song Xiong
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Xue-Di Zhang
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Jia-Wei Yan
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Ting-Ting Huang
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Zhan-Zhong Liu
- Department of Pharmacy, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Zheng-Kang Li
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Liang Wang
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Fen Li
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| |
Collapse
|
2
|
Hou K, Jabeen R, Sun L, Wei J. How do Mutations of Mycobacterium Genes Cause Drug Resistance in Tuberculosis? Curr Pharm Biotechnol 2024; 25:724-736. [PMID: 37888812 DOI: 10.2174/0113892010257816230920053547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023]
Abstract
A steady increase in the prevalence of drug-resistant tuberculosis (DR-TB) has already been reported in Pakistan. In addition, DR-TB is gradually changing from one-drug resistance to multi-drug resistance, which is a serious challenge for tuberculosis treatment. This review provides an overview of the anti-tuberculosis drugs and focuses on the molecular mechanisms of drug resistance in Mycobacterium tuberculosis, with the hope that it will contribute to the study of drug resistance in response to the emergence of multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Kaiying Hou
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Riffat Jabeen
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin Sun
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Kaya H, Ersoy L, Ülger M, Bozok T, Aslan G. Investigation of efflux pump genes in isoniazid resistant Mycobacterium tuberculosis isolates. Indian J Med Microbiol 2023; 46:100428. [PMID: 37945121 DOI: 10.1016/j.ijmmb.2023.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Tuberculosis (TB) is one of the most important infectious diseases worldwide. Resistance to antituberculosis drugs develops because of genetic mutations that render drug-activating enzymes inactive, changes in cell wall permeability, and increased expression of efflux pump genes and also combination therapy with efflux pump inhibitors may be more effective in drug-resistant TB patients. AIMS To investigate the effect of verapamil (VR) on isonicotinic acid hydrazide (INH) resistance and the expression of 21 efflux pump genes in INH monoresistant MTBC clinical isolates. STUDY DESIGN In vitro study. METHODS In our mycobacteriology laboratory, 10 INH monoresistant and 10 primary anti-TB drug-susceptible MTBC clinical isolates were selected. Drug susceptibilities for INH and VR were studied by resazurin microtiter plate method and minimum inhibitory concentration (MIC) was determined. Additionally, mRNA gene expressions were investigated by quantitative Real Time Polymerase Chain Reaction for 21 efflux gene regions. RESULTS While no change was observed in INH MICs of susceptible isolates under VR effect, 6 (60%) of the 10 INH-resistant isolates showed a decrease of less than one dilution in INH MIC under VR effect. VR significantly reduced resistance in resistant isolates (p < 0.05). INH monoresistant MTBC isolates showed a 2.85-fold expression increase in the Rv1634 region of the Major Facilitator Superfamily efflux family under INH stress (p = 0.029). No statistically significant change was observed in other efflux gene regions. Herein, increased expression was observed in the Rv1634 region, consistent with other studies in the literature, and this was associated with drug resistance. No significant change in expression was detected in other gene regions. CONCLUSION The effect of efflux pump inhibitor VR on INH MIC levels is promising for the treatment of resistant TB. However, studies with more resistant strains are needed to evaluate the efficacy of efflux pump genes.
Collapse
Affiliation(s)
- Hamide Kaya
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| | - Leyla Ersoy
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| | - Mahmut Ülger
- Mersin University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Mersin, Türkiye.
| | - Taylan Bozok
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| | - Gönül Aslan
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| |
Collapse
|
4
|
Dlamini TC, Mkhize BT, Sydney C, Maningi NE, Malinga LA. Molecular investigations of Mycobacterium tuberculosis genotypes among baseline and follow-up strains circulating in four regions of Eswatini. BMC Infect Dis 2023; 23:566. [PMID: 37644382 PMCID: PMC10466871 DOI: 10.1186/s12879-023-08546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The tuberculosis (TB) epidemic remains a major global health problem and Eswatini is not excluded. Our study investigated the circulating genotypes in Eswatini and compared them at baseline (start of treatment) and follow-up during TB treatment. METHODS Three hundred and ninety (n = 390) participants were prospectively enrolled from referral clinics and patients who met the inclusion criteria, were included in the study. A total of 103 participants provided specimens at baseline and follow-up within six months. Mycobacterium tuberculosis (M.tb) strains were detected by GeneXpert® MTB/RIF assay (Cephied, USA) and Ziehl -Neelsen (ZN) microscopy respectively at baseline and follow-up time-points respectively. The 206 collected specimens were decontaminated and cultured on BACTEC™ MGIT™ 960 Mycobacteria Culture System (Becton Dickinson, USA). Drug sensitivity testing was performed at both baseline and follow-up time points. Spoligotyping was performed on both baseline and follow-up strains after DNA extraction. RESULTS Resistance to at least one first line drug was detected higher at baseline compared to follow-up specimens with most of them developing into multidrug-resistant (MDR)-TB. A total of four lineages and twenty genotypes were detected. The distribution of the lineages varied among the different regions in Eswatini. The Euro-American lineage was the most prevalent with 46.12% (95/206) followed by the East Asian with 24.27% (50/206); Indo-Oceanic at 9.71% (20/206) and Central Asian at 1.94% (4/206). Furthermore, a high proportion of the Beijing genotype at 24.27% (50/206) and S genotype at 16.50% (34/206) were detected. The Beijing genotype was predominant in follow-up specimens collected from the Manzini region with 48.9% (23/47) (p = 0.001). A significant proportion of follow-up specimens developed MDR-TB (p = 0.001) with Beijing being the major genotype in most follow-up specimens (p < 0.000). CONCLUSION Eswatini has a high M.tb genotypic diversity. A significant proportion of the TB infected participants had the Beijing genotype associated with MDR-TB in follow-up specimens and thus indicate community wide transmission.
Collapse
Affiliation(s)
- Talent C Dlamini
- Department of Medical Laboratory Sciences, Southern Africa Nazarene University, Manzini, Eswatini.
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa.
| | - Brenda T Mkhize
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | - Clive Sydney
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | | | - Lesibana A Malinga
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Experimental confirmation that an uncommon
rrs
gene mutation (g878a) of
Mycobacterium tuberculosis
confers resistance to streptomycin. Antimicrob Agents Chemother 2022; 66:e0191521. [DOI: 10.1128/aac.01915-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effective treatment of patients diagnosed with drug resistant tuberculosis is highly dependent upon the ability to rapidly and accurately determine the antibiotic susceptibility profile of the
Mycobacterium tuberculosis
isolate(s) involved. Thus, as more clinical microbiology laboratories advance towards the use of DNA sequence-based diagnostics, it is imperative that their predictive functions extend beyond the well-known resistance mutations, in order to also encompass as many of the lower-frequency mutations as possible. However, in most cases, the fundamental experimental proof that links these uncommon mutations with phenotypic resistance is lacking. One such example is the g878a polymorphism within the
rrs
16s rRNA gene. We, and others, have identified this mutation within a small number of drug-resistant isolates, although a consensus regarding exactly which aminoglycoside antibiotic(s) it confers resistance toward has not previously been reached. Here we have employed oligo-mediated recombineering to introduce the g878a polymorphism into the
rrs
gene of
M. bovis
BCG - a close relative of
M. tuberculosis
- and demonstrate that it confers low-level resistance to streptomycin alone. It does not confer cross-resistance towards amikacin, capreomycin, nor kanamycin. We also demonstrate that the
rrs
g878a
mutation exerts a substantial fitness defect
in vitro
, that may at least in part explain why clinical isolates bearing this mutation appear to be quite rare. Overall, this study provides clarity to the phenotype attributable to the
rrs
g878a
mutation and is relevant to the future implementation of genomics-based diagnostics, as well as the clinical management of patients where this particular polymorphism is encountered.
Collapse
|
6
|
Sharma M, Singh P. Role of TlyA in the Biology of Uncultivable Mycobacteria. Comb Chem High Throughput Screen 2022; 25:1587-1594. [PMID: 35021968 DOI: 10.2174/1386207325666220111150923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
TlyA proteins are related to distinct functions in a diverse spectrum of bacterial pathogens including mycobacterial spp. There are several annotated proteins function as hemolysin or pore forming molecules that play an important role in the virulence of pathogenic organisms. Many studies reported the dual activity of mycobacterial TlyA as 'hemolysin' and 'S-adenosylmethionine dependent rRNA methylase'. To act as a hemolysin, a sequence must have a signal sequence and transmembrane segment which helps the protein to enter the extracellular environment. Interestingly, the mycobacterial tlyA has neither a traditional signal sequences of general/sec/tat pathways nor any transmembrane segments are present. Still it can reach the extracellular milieu with the help of non-classical signal mechanisms. Also, retention of tlyA in cultivable mycobacterial pathogens (such as Mycobacterium tuberculosis and M. marinum) as well as uncultivated mycobacterial pathogens despite their extreme reductive evolution (such as M. leprae, M. lepromatosis and M. uberis) suggests its crucial role in evolutionary biology of pathogenic mycobacteria. Numerous virulence factors have been characterised from the uncultivable mycobacteria but the information of TlyA protein is still limited in terms of molecular and structural characterisation. The genomic insights offered by comparative analysis of TlyA sequences and its conserved domains reveal its pore forming activity which further confirms its role as a virulence protein, particularly in uncultivable mycobacteria. Therefore, this review presents a comparative analysis of mycobacterial TlyA family by sequence homology and alignment to improve our understanding of this unconventional hemolysin and RNA methyltransferase TlyA of uncultivable mycobacteria.
Collapse
Affiliation(s)
- Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
7
|
Antibiotic resistance of Mycobacterium tuberculosis complex in Africa: A systematic review of current reports of molecular epidemiology, mechanisms and diagnostics. J Infect 2019; 79:550-571. [DOI: 10.1016/j.jinf.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022]
|
8
|
Jabbar A, Phelan JE, de Sessions PF, Khan TA, Rahman H, Khan SN, Cantillon DM, Wildner LM, Ali S, Campino S, Waddell SJ, Clark TG. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci Rep 2019; 9:14996. [PMID: 31628383 PMCID: PMC6802378 DOI: 10.1038/s41598-019-51562-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis bacteria, is a leading infectious cause of mortality worldwide, including in Pakistan. Drug resistant M. tuberculosis is an emerging threat for TB control, making it important to detect the underlying genetic mutations, and thereby inform treatment decision making and prevent transmission. Whole genome sequencing has emerged as the new diagnostic to reliably predict drug resistance within a clinically relevant time frame, and its deployment will have the greatest impact on TB control in highly endemic regions. To evaluate the mutations leading to drug resistance and to assess for evidence of the transmission of resistant strains, 81 M. tuberculosis samples from Khyber Pakhtunkhwa province (North West Pakistan) were subjected to whole genome sequencing and standard drug susceptibility testing for eleven anti-TB drugs. We found the majority of M. tuberculosis isolates were the CAS/Delhi strain-type (lineage 3; n = 57; 70.4%) and multi-drug resistant (MDR; n = 62; 76.5%). The most frequent resistance mutations were observed in the katG and rpoB genes, conferring resistance to isoniazid and rifampicin respectively. Mutations were also observed in genes conferring resistance to other first and second-line drugs, including in pncA (pyrazinamide), embB (ethambutol), gyrA (fluoroquinolones), rrs (aminoglycosides), rpsL, rrs and giB (streptomycin) loci. Whilst the majority of mutations have been reported in global datasets, we describe unreported putative resistance markers in katG, ethA (ethionamide), gyrA and gyrB (fluoroquinolones), and pncA. Analysis of the mutations revealed that acquisition of rifampicin resistance often preceded isoniazid in our isolates. We also observed a high proportion (17.6%) of pre-MDR isolates with fluoroquinolone resistance markers, potentially due to unregulated anti-TB drug use. Our isolates were compared to previously sequenced strains from Pakistan in a combined phylogenetic tree analysis. The presence of lineage 2 was only observed in our isolates. Using a cut-off of less than ten genome-wide mutation differences between isolates, a transmission analysis revealed 18 M. tuberculosis isolates clustering within eight networks, thereby providing evidence of drug-resistant TB transmission in the Khyber Pakhtunkhwa province. Overall, we have demonstrated that drug-resistant TB isolates are circulating and transmitted in North West Pakistan. Further, we have shown the usefulness of whole genome sequencing as a diagnostic tool for characterizing M. tuberculosis isolates, which will assist future epidemiological studies and disease control activities in Pakistan.
Collapse
Affiliation(s)
- Abdul Jabbar
- Department of Medical Lab Technology, University of Haripur, Haripur, Pakistan.
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Taj Ali Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, University of Haripur, Haripur, Pakistan
| | - Daire M Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Leticia Muraro Wildner
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Sajid Ali
- Provincial Tuberculosis Reference Laboratory, Hayatabad Medical Complex Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
9
|
Li Q, Gao H, Zhang Z, Tian Y, Liu T, Wang Y, Lu J, Liu Y, Dai E. Mutation and Transmission Profiles of Second-Line Drug Resistance in Clinical Isolates of Drug-Resistant Mycobacterium tuberculosis From Hebei Province, China. Front Microbiol 2019; 10:1838. [PMID: 31447823 PMCID: PMC6692474 DOI: 10.3389/fmicb.2019.01838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
The emergence of drug-resistant tuberculosis (TB) is involved in ineffective treatment of TB, especially multidrug resistant/extensively resistant TB (MDR/XDR-TB), leading to acquired resistance and transmission of drug-resistant strains. Second-line drugs (SLD), including both fluoroquinolones and injectable drugs, were commonly proved to be the effective drugs for treatment of drug-resistant TB. The purpose of this study was to investigate the prevalence of SLD-resistant strains and its specific mutations in drug-resistant Mycobacterium tuberculosis clinical isolates, and to acknowledge the transmission pattern of SLD resistance strains in Hebei. The genes gyrA, gyrB, rrs, eis promoter and tlyA of 257 drug-resistant clinical isolates were sequenced to identify mutations that could be responsible for resistance against fluoroquinolones and second-line injectable drugs. Each isolate was genotyped by Spoligotyping and 15-loci MIRU-VNTR. Our results indicated that 48.2% isolates were resistant to at least one of five SLD. Of them, 37.7% isolates were resistant to fluoroquinolones and 24.5% isolates were resistant to second-line injectable drugs. Mutations in genes gyrA, gyrB, rrs, eis promoter and tlyA were detected in 73 (75.3%), 7 (7.2%), 24 (38.1%), 5 (7.9%), and 3 (4.8%) isolates, respectively. The most prevalent mutations were the D94G (23.7%) in gyrA gene and the A1401G (33.3%) in rrs gene. A combination of gyrA, rrs and eis promoter can act as a valuable predicator for predicting XDR phenotype. These results highlight the development of rapid diagnosis are the effective manners for the control of SLD-TB or XDR-TB.
Collapse
Affiliation(s)
- Qianlin Li
- Department of Epidemiology and Statistics, North China University of Science and Technology, Tangshan, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Zhi Zhang
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yueyang Tian
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Tengfei Liu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yuling Wang
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Jianhua Lu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yuzhen Liu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
10
|
Faksri K, Kaewprasert O, Ong RTH, Suriyaphol P, Prammananan T, Teo YY, Srilohasin P, Chaiprasert A. Comparisons of whole-genome sequencing and phenotypic drug susceptibility testing for Mycobacterium tuberculosis causing MDR-TB and XDR-TB in Thailand. Int J Antimicrob Agents 2019; 54:109-116. [PMID: 30981926 DOI: 10.1016/j.ijantimicag.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/26/2019] [Accepted: 04/06/2019] [Indexed: 01/12/2023]
Abstract
Drug-resistant tuberculosis (TB) is a major public health problem. There is little information regarding the genotypic-phenotypic association of anti-TB drugs, especially for second-line drugs. This study compared phenotypic drug susceptibility testing (DST) with predictions based on whole-genome sequencing (WGS) data for 266 Mycobacterium tuberculosis isolates. Phenotypic DST used the standard proportional method. Clinical isolates of M. tuberculosis collected in Thailand between 1998 and 2013 comprised 51 drug-sensitive strains, six mono-resistant strains, two multiple-resistant strains, 88 multi-drug-resistant strains, 95 pre-extensively drug-resistant strains and 24 extensively drug-resistant strains. WGS analysis was performed using the computer programs PhyResSE and TB-Profiler. TB-Profiler had higher average concordance with phenotypic DST than PhyResSE for both first-line (91.96% vs. 91.4%) and second-line (79.67% vs. 78.20%) anti-TB drugs. The average sensitivity for all anti-TB drugs was also higher (83.13% vs. 72.08%) with slightly lower specificity (83.50% vs. 86.68%). Regardless of the program used, isoniazid, rifampicin and amikacin had the highest concordance with phenotypic DST (96.2%, 93.5% and 95.6%, respectively). Ethambutol, ethionamide and fluoroquinolones had the lowest concordance (87.34%, 81.44% and 73.85%, respectively). Concordance rates of ofloxacin (a second-generation fluoroquinolone), levofloxacin, moxifloxacin and gatifloxacin (third- and fourth-generation fluoroquinolones) were 91.79%, 76.62%, 72.64% and 57.35%, respectively. Discordance between phenotypic and WGS-based DSTs may be due, in part, to the choice of critical concentration and variable reproducibility of the phenotypic tests. It may also be due to limitations of the mutation databases (especially for the second-line drugs) and the analysis program used. Mutations related to fluoroquinolone resistance, especially the later generations, need to be identified.
Collapse
Affiliation(s)
- Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Centre for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand.
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Centre for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Therdsak Prammananan
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Ministry of Science and Technology, Pathum Thani, Thailand
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Genome Institute of Singapore, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Life Sciences Institute, National University of Singapore, Singapore
| | - Prapaporn Srilohasin
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Webb JR, Price EP, Somprasong N, Schweizer HP, Baird RW, Currie BJ, Sarovich DS. Development and validation of a triplex quantitative real-time PCR assay to detect efflux pump-mediated antibiotic resistance in Burkholderia pseudomallei. Future Microbiol 2018; 13:1403-1418. [PMID: 30256166 PMCID: PMC6190177 DOI: 10.2217/fmb-2018-0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/23/2018] [Indexed: 01/12/2023] Open
Abstract
AIM To develop a probe-based triplex quantitative real-time PCR assay to simultaneously detect the upregulation of the efflux pumps AmrAB-OprA, BpeAB-OprB and BpeEF-OprC in Burkholderia pseudomallei strains exhibiting increased minimum inhibitory concentrations toward meropenem, doxycycline or trimethoprim-sulfamethoxazole. METHODS The triplex assay was developed and subsequently tested on RNA isolated from eight clinical and eight laboratory-generated B. pseudomallei mutants harboring efflux pump regulator mutations. RESULTS The triplex assay accurately detected efflux pump upregulation in all clinical and laboratory mutants, which corresponded with decreased antibiotic susceptibility or antibiotic resistance. CONCLUSION Rapid detection of antibiotic resistance provides clinicians with a tool to identify potential treatment failure in near real time, enabling informed alteration of treatment during an infection and improved patient outcomes.
Collapse
Affiliation(s)
- Jessica R Webb
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Erin P Price
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nawarat Somprasong
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Robert W Baird
- Departments of Infectious Diseases & Pathology & Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Departments of Infectious Diseases & Pathology & Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
12
|
Gao Y, Zhang Z, Deng J, Mansjö M, Ning Z, Li Y, Li X, Hu Y, Hoffner S, Xu B. Multi-center evaluation of GenoType MTBDRsl line probe assay for rapid detection of pre-XDR and XDR Mycobacterium tuberculosis in China. J Infect 2018; 77:328-334. [PMID: 29969597 DOI: 10.1016/j.jinf.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The implementation of rapid and reliable drug susceptibilities diagnosis is fundamental for effective treatment of multidrug-resistant tuberculosis(MDR-TB). The present study aimed to assess the diagnostic performance of the 2nd-version GenoType MTBDRsl kit as well as the impact of its implementation on the turnaround time in a multi-center Chinese study. METHODS Totally 353 MDR-TB patient specimens were consecutively tested. The 2nd-version GenoType MTBDRsl assay, drug susceptibility testing with the MGIT 960 system, and sequencing were performed and compared. RESULTS MTBDRsl testing identified the major genotypes associated with fluoroquinolones resistance, predominated by gyrA MUT3B (Asp94Asn and Asp94Tyr, 26.5%) and MUT3C (Asp94Gly, 19.5%). The genotypes associated with resistance to 2nd-line injectable drugs(SLIDs) were rrsMUT1(A1401G, 64.9%) and absence of WT1(C1402T, 10.5%). The sensitivities for detection of resistance to fluoroquinolones, SLIDs, and their combination (extensively drug resistance, XDR) were 80.5%, 80.7% and 73.5% and specificities were 100.0%, 99.3% and 99.1%, respectively. Implementation of this test significantly reduced the turnaround time between sample collection and result reporting from 45 to 3 days, a reduction by 93.3% (p, 0.001). CONCLUSION With a favorable diagnostic performance and short turnaround time, the 2nd-version GenoType MTBDRsl assay proves its value for early diagnosis of resistance to 2nd-line drugs as well as of XDR-TB in China.
Collapse
Affiliation(s)
- Yazhou Gao
- Department of Epidemiology, School of Public Health, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhengdong Zhang
- Zigong City Center for Disease Control and Prevention, Zigong City, Sichuan, China
| | - Jianping Deng
- Zigong City Center for Disease Control and Prevention, Zigong City, Sichuan, China
| | | | - Zhu Ning
- Zigong City Center for Disease Control and Prevention, Zigong City, Sichuan, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xuliang Li
- Department of Epidemiology, School of Public Health, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yi Hu
- Department of Epidemiology, School of Public Health, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Sven Hoffner
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Biao Xu
- Department of Epidemiology, School of Public Health, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China; Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Li P, Gu Y, Li J, Xie L, Li X, Xie J. Mycobacterium tuberculosis Major Facilitator Superfamily Transporters. J Membr Biol 2017; 250:573-585. [DOI: 10.1007/s00232-017-9982-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/18/2017] [Indexed: 01/26/2023]
|
14
|
Liang YP, Chen Y, Xiao TY, Xia Q, Liu HC, Zhao XQ, Zeng CY, Zhao LL, Wan KL. Applied multiplex allele specific PCR to detect second-line drug resistance among multidrug-resistant tuberculosis in China. Tuberculosis (Edinb) 2017; 107:1-4. [PMID: 29050755 DOI: 10.1016/j.tube.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022]
Abstract
Rapid detection of resistance to the second-line drugs is essential for early initiation of appropriate anti-tubercular treatment regimen among multi-drug tuberculosis (MDR-TB). In this study, we applied a multiplex allele-specific PCR (MAS-PCR) to identify the mutations on codons 90 and 94 of gyrA and nucleotide 1401 of rrs for detecting ofloxacin (OFX) and kanamycin (KAN) resistance in 139 MDR-TB isolates from China. Using the traditional phenotypic method as the reference, MAS-PCR detected resistance to OFX and KAN with sensitivities of 67.3% and 76.5%, respectively, and specificities of 100.0%. Therefore, MAS-PCR assays can be used for rapid detection of second-line drug resistance among MDR-TB in China, enabling early administration of appropriate treatment regimens to the affected MDR-TB patients.
Collapse
Affiliation(s)
- Ya-Ping Liang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Shaanxi TB Prevention and Treatment Hospital, Xi'an, 710100, China
| | - Yan Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tong-Yang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiang Xia
- Zhejiang Prevention and Treatment Center of Tuberculosis, Zhejiang TCM & WM Hospital, Hangzhou, China
| | - Hai-Can Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiu-Qin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Li-Li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Kang-Lin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
15
|
Zheng X, Ning Z, Drobniewski F, Yang J, Li Q, Zhang Z, Hu Y. pncA mutations are associated with slower sputum conversion during standard treatment of multidrug-resistant tuberculosis. Int J Antimicrob Agents 2016; 49:183-188. [PMID: 28012685 DOI: 10.1016/j.ijantimicag.2016.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/24/2016] [Accepted: 10/02/2016] [Indexed: 11/17/2022]
Abstract
Despite the strong association between drug resistance and genetic mutations, the value of molecular diagnosis of drug resistance to guide the treatment of multidrug-resistant tuberculosis (MDR-TB) remains unclear. This is particularly relevant in resource-limited areas where it is difficult to perform drug susceptibility testing (DST). Here we investigated the association between drug susceptibility phenotypes and genotypes and treatment outcomes in patients with MDR-TB. This study enrolled 74 consecutive patients with confirmed MDR-TB between 2010 and 2011, and outcomes were followed-up over the 24-month treatment course. All of the isolates were tested for phenotypic susceptibility to second-line drugs using the Mycobacteria Growth Indicator Tube (MGIT)-based system, and genotypic mutations were assessed by DNA sequencing. Among the 74 MDR-TB isolates, 29 (39.2%) were resistant to fluoroquinolones and/or second-line injectable drugs, of which 21 (72.4%) harboured a mutation in drug resistance-related genes (gyrA, rrs or eis). In addition, 32 individuals (43.2%) also had pyrazinamide (PZA)-resistant isolates, with 28 (87.5%) containing the pncA mutation. By backward selection in the multivariate logistic regression and Cox proportional hazard models, PZA resistance and its related pncA gene mutation demonstrated a correlation with a lower likelihood of culture conversion at 8 weeks and treatment success. Meanwhile, the fluoroquinolone resistance-related gyrA gene mutation was negatively correlated with treatment success. DST for PZA and fluoroquinolones together with genetic information appears to provide a clinically useful indicator of the treatment outcome of MDR-TB in China.
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Public Health Safety (Fudan University), China
| | - Zhu Ning
- Zigong City Center for Disease Control and Prevention, Zigong City, Sichuan, China
| | | | - Jingyong Yang
- Shanghai integrated traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Qun Li
- Zigong City Center for Disease Control and Prevention, Zigong City, Sichuan, China
| | - Zhengdong Zhang
- Zigong City Center for Disease Control and Prevention, Zigong City, Sichuan, China
| | - Yi Hu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Public Health Safety (Fudan University), China.
| |
Collapse
|