1
|
Matlock W, Shaw LP, Stoesser N. Global genomic epidemiology of bla GES-5 carbapenemase-associated integrons. Microb Genom 2024; 10:001312. [PMID: 39630499 PMCID: PMC11616780 DOI: 10.1099/mgen.0.001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites (attI and attC or attC and attC). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing 'adaptation on demand', and can be found on both chromosomes and plasmids. Understanding the patterns of integron diversity may help to understand the epidemiology of AMR genes. As a case study, we examined the clinical resistance gene bla GES-5, an integron-associated class A carbapenemase first reported in Greece in 2004 and since observed worldwide, which to our knowledge has not been the subject of a previous global analysis. Using a dataset comprising all de-duplicated NCBI contigs containing bla GES-5 (n=104), we developed a pangenome graph-based workflow to characterize and cluster the diversity of bla GES-5-associated integrons. We demonstrate that bla GES-5-associated integrons on plasmids are different to those on chromosomes. Chromosomal integrons were almost all identified in Pseudomonas aeruginosa ST235, with a consistent gene cassette content and order. We observed instances where insertion sequence IS110 disrupted attC sites, which might immobilize the gene cassettes and explain the conserved integron structure despite the presence of intI1 integrase promoters, which would typically facilitate capture or excision and rearrangement. The plasmid-associated integrons were more diverse in their gene cassette content and order, which could be an indication of greater integrase activity and 'shuffling' of integrons on plasmids.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
2
|
Sukkar I, Valcek A, Dolejska M. VIM-1-producing Enterobacter asburiae with mobile colistin resistance genes from wastewaters. BMC Genomics 2024; 25:870. [PMID: 39300338 PMCID: PMC11411806 DOI: 10.1186/s12864-024-10780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wastewaters are considered as important players in the spread of antimicrobial resistance, thus affecting the health of humans and animals. Here, we focused on wastewaters as a possible source of carbapenemase-producing Enterobacterales for the environment. METHODS A total of 180 presumptive coliforms from hospital and municipal wastewaters, and a river in the Czech Republic were obtained by selective cultivation on meropenem-supplemented media and tested for presence of carbapenemase-encoding genes by PCR. Strains carrying genes of interest were characterized by testing antimicrobial susceptibility, carbapenemase production and combination of short- and long- read whole-genome sequencing. The phylogenetic tree including publicly available genomes of Enterobacter asburiae was conducted using Prokka, Roary and RAxML. RESULTS Three VIM-producing Enterobacter asburiae isolates, members of the Enterobacter cloacae complex, were detected from hospital and municipal wastewaters, and the river. The blaVIM-1 gene was located within a class 1 integron that was carried by different F-type plasmids and one non-typeable plasmid. Furthermore, one of the isolates carried plasmid-borne colistin-resistance gene mcr-10, while in another isolate chromosomally located mcr-9 without colistin resistance phenotype was detected. In addition, the analysis of 685 publicly available E. asburiae genomes showed they frequently carry carbapenemase genes, highlighting the importance of this species in the emergence of resistance to last-line antibiotics. CONCLUSION Our findings pointed out the important contribution of hospital and community wastewaters in transmission of multi-drug resistant pathogens.
Collapse
Affiliation(s)
- Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Adam Valcek
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.
- Faculty of Medicine, Charles University, Pilsen, Czech Republic.
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
3
|
Rolbiecki D, Paukszto Ł, Krawczyk K, Korzeniewska E, Sawicki J, Harnisz M. Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater - A nanopore long-read metagenomic approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132298. [PMID: 37595469 DOI: 10.1016/j.jhazmat.2023.132298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens).
Collapse
Affiliation(s)
- Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland.
| |
Collapse
|
4
|
Ota Y, Prah I, Mahazu S, Gu Y, Nukui Y, Koike R, Saito R. Novel insights into genetic characteristics of blaGES-encoding plasmids from hospital sewage. Front Microbiol 2023; 14:1209195. [PMID: 37664110 PMCID: PMC10469963 DOI: 10.3389/fmicb.2023.1209195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Studentova V, Sudova V, Bitar I, Paskova V, Moravec J, Pompach P, Volny M, Novak P, Hrabak J. Preferred β-lactone synthesis can explain high rate of false-negative results in the detection of OXA-48-like carbapenemases. Sci Rep 2022; 12:22235. [PMID: 36564543 PMCID: PMC9789108 DOI: 10.1038/s41598-022-26735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The resistance to carbapenems is usually mediated by enzymes hydrolyzing β-lactam ring. Recently, an alternative way of the modification of the antibiotic, a β-lactone formation by OXA-48-like enzymes, in some carbapenems was identified. We focused our study on a deep analysis of OXA-48-like-producing Enterobacterales, especially strains showing poor hydrolytic activity. In this study, well characterized 74 isolates of Enterobacterales resistant to carbapenems were used. Carbapenemase activity was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), liquid chromatography/mass spectrometry (LC-MS), Carba-NP test and modified Carbapenem Inactivation Method (mCIM). As meropenem-derived β-lactone possesses the same molecular weight as native meropenem (MW 383.46 g/mol), β-lactonization cannot be directly detected by MALDI-TOF MS. In the spectra, however, the peaks of m/z = 340.5 and 362.5 representing decarboxylated β-lactone and its sodium adduct were detected in 25 out of 35 OXA-48-like producers. In the rest 10 isolates, decarboxylated hydrolytic product (m/z = 358.5) and its sodium adduct (m/z = 380.5) have been detected. The peak of m/z = 362.5 was detected in 3 strains co-producing OXA-48-like and NDM-1 carbapenemases. The respective signal was identified in no strain producing class A or class B carbapenemase alone showing its specificity for OXA-48-like carbapenemases. Using LC-MS, we were able to identify meropenem-derived β-lactone directly according to the different retention time. All strains with a predominant β-lactone production showed negative results of Carba NP test. In this study, we have demonstrated that the strains producing OXA-48-like carbapenemases showing false-negative results using Carba NP test and MALDI-TOF MS preferentially produced meropenem-derived β-lactone. We also identified β-lactone-specific peak in MALDI-TOF MS spectra and demonstrated the ability of LC-MS to detect meropenem-derived β-lactone.
Collapse
Affiliation(s)
- Vendula Studentova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Vendula Sudova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Clinical Biochemistry and Haematology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Ibrahim Bitar
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Veronika Paskova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Jiri Moravec
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Petr Pompach
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Michael Volny
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petr Novak
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jaroslav Hrabak
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| |
Collapse
|
6
|
Genomic characterization of three GES-producing Enterobacterales isolated in the Czech Republic. J Glob Antimicrob Resist 2022; 29:116-119. [DOI: 10.1016/j.jgar.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
|
7
|
Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF, Adams G, Pavlu J, Innes AJ, Eades C, Brannigan ET, Findlay J, White L, Bolt F, Kadhani T, Chow Y, Patel B, Mookerjee S, Otter JA, Sriskandan S, Woodford N, Holmes A. A Multispecies Cluster of GES-5 Carbapenemase-Producing Enterobacterales Linked by a Geographically Disseminated Plasmid. Clin Infect Dis 2021; 71:2553-2560. [PMID: 31746994 PMCID: PMC7744980 DOI: 10.1093/cid/ciz1130] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics, but rare resistance mechanisms can compromise detection. One year after a Guiana Extended-Spectrum (GES)-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole-genome sequencing (WGS; later found to be part of a cluster of 3 cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital. METHODS Bacteria were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, antimicrobial susceptibility testing followed European Committee on Antimicrobial Susceptibility Testing guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using polymerase chain reaction (PCR) detection of GES, pulsed-field gel electrophoresis (PFGE), and WGS for the second cluster. RESULTS The identification of the first GES-5 K. oxytoca isolate was delayed, being identified by WGS. Implementation of a GES-gene PCR informed the occurrence of the second cluster in real time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the 2 clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca, Escherichia coli, and Enterobacter cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from 3 hospitals elsewhere in the United Kingdom. CONCLUSIONS Genomic sequencing revolutionized the epidemiological understanding of the clusters; it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally.
Collapse
Affiliation(s)
- Matthew J Ellington
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Frances Davies
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Elita Jauneikaite
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - George Adams
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jiri Pavlu
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Andrew J Innes
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Christopher Eades
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Eimear T Brannigan
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jacqueline Findlay
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Leila White
- Microbiology, Royal Preston Hospital, Lancashire Teaching Hospitals National Health Service Foundation Trust, Preston, United Kingdom
| | - Frances Bolt
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Tokozani Kadhani
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Yimmy Chow
- North West London Health Protection Team, Public Health England, London, United Kingdom
| | - Bharat Patel
- Public Health Laboratory London, National Infections Service, Public Health England, London, United Kingdom
| | - Siddharth Mookerjee
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jonathan A Otter
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Alison Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial College Healthcare National Health Service Trust, London, United Kingdom
| |
Collapse
|
8
|
Nishida S, Matsunaga N, Kamimura Y, Ishigaki S, Furukawa T, Ono Y. Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan. Microorganisms 2020; 8:E1816. [PMID: 33217991 PMCID: PMC7698710 DOI: 10.3390/microorganisms8111816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) are an emerging threat in healthcare settings worldwide. OBJECTIVES We evaluated the presence of carbapenemase genes in CPE in a tertiary care university hospital in Tokyo, Japan. METHODS Carbapenem-resistant clinical isolates were collected in 2018 at Teikyo University Hospital (Tokyo, Japan). Bacterial species were identified using MALDI-TOF MS. Carbapenemase production was evaluated using a carbapenemase inactivation method. The presence of carbapenemase genes was confirmed by multiplex PCR and DNA sequencing. RESULTS Four CPE isolates were identified: two Enterobacter cloacae complex strains and Klebsiella oxytoca and Klebsiella pneumoniae strains. Three of the isolates (E. cloacae complex and K. oxytoca) were IMP-1-type producers, including IMP-10 in their produced metallo-β-lactamase, and are epidemic in East Japan. The IMP-10-producing E. cloacae complex strain also produced CTX-M ESBL. The other CPE isolate (K. pneumoniae) is a VIM-1 producer. VIM-1-producing K. pneumoniae is epidemic in Europe, especially in Greece. Accordingly, the VIM-1 producer was isolated from a patient with a medical history in Greece. CONCLUSIONS This study revealed the emergence of E. cloacae complex co-producing IMP-1-type carbapenemase and CTX-M ESBL, and K. pneumoniae producing VIM-1 carbapenemase in clinical isolates in Japan. Metallo-β-lactamase was the most prevalent type of carbapenemase at Teikyo University Hospital, especially IMP-1-type carbapenemase. The detection of VIM-1-producing K. pneumoniae suggests that epidemic CPE from overseas can spread to countries with low CPE prevalence, such as Japan, highlighting the need for active surveillance.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Naohisa Matsunaga
- Department of Infection Control and Prevention, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan;
| | - Yuta Kamimura
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Shinobu Ishigaki
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
| |
Collapse
|
9
|
Piotrowska M, Dziewit L, Ostrowski R, Chmielowska C, Popowska M. Molecular Characterization and Comparative Genomics of IncQ-3 Plasmids Conferring Resistance to Various Antibiotics Isolated from a Wastewater Treatment Plant in Warsaw (Poland). Antibiotics (Basel) 2020; 9:antibiotics9090613. [PMID: 32957637 PMCID: PMC7557826 DOI: 10.3390/antibiotics9090613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) β-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Rafał Ostrowski
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
10
|
Spread of Klebsiella pneumoniae ST45 Producing GES-5 Carbapenemase or GES-1 Extended-Spectrum β-Lactamase in Newborns and Infants. Antimicrob Agents Chemother 2020; 64:AAC.00595-20. [PMID: 32631822 DOI: 10.1128/aac.00595-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|