1
|
Hattab S, Ma AH, Tariq Z, Vega Prado I, Drobish I, Lee R, Yee R. Rapid Phenotypic and Genotypic Antimicrobial Susceptibility Testing Approaches for Use in the Clinical Laboratory. Antibiotics (Basel) 2024; 13:786. [PMID: 39200086 PMCID: PMC11351821 DOI: 10.3390/antibiotics13080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The rapid rise in increasingly resistant bacteria has become a major threat to public health. Antimicrobial susceptibility testing (AST) is crucial in guiding appropriate therapeutic decisions and infection prevention practices for patient care. However, conventional culture-based AST methods are time-consuming and labor-intensive. Therefore, rapid AST approaches exist to address the delayed gap in time to actionable results. There are two main types of rapid AST technologies- phenotypic and genotypic approaches. In this review, we provide a summary of all commercially available rapid AST platforms for use in clinical microbiology laboratories. We describe the technologies utilized, performance characteristics, acceptable specimen types, types of resistance detected, turnaround times, limitations, and clinical outcomes driven by these rapid tests. We also discuss crucial factors to consider for the implementation of rapid AST technologies in a clinical laboratory and what the future of rapid AST holds.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Adrienne H. Ma
- Department of Pharmacy, Valley View Hospital, Glenwood Springs, CO 81647, USA;
| | - Zoon Tariq
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ilianne Vega Prado
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ian Drobish
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rachel Lee
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
| | - Rebecca Yee
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| |
Collapse
|
2
|
Brosh-Nissimov T, Tzur A, Grupel D, Cahan A, Ma'aravi N, Heled-Akiva M, Jawamis H, Leskes H, Barenboim E, Sorek N. Clinical impact of the accelerate PhenoTest® BC system on patients with gram-negative bacteremia and high risk of antimicrobial resistance: a prospective before-after implementation study. Ann Clin Microbiol Antimicrob 2023; 22:62. [PMID: 37516885 PMCID: PMC10387206 DOI: 10.1186/s12941-023-00619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Accelerate PhenoTest® BC system (AXDX) is a novel assay for rapid bacterial identification and antimicrobial susceptibility (AST). We report an evaluation of its impact on treatment of patients with Gram-negative bacteremia (GNB) with a high risk of antimicrobial resistance (AMR). METHODS A prospective single-center evaluation before and after implementation of AXDX in addition to standard-of-care (SOC) microbiology and antimicrobial stewardship program (ASP). Patients with GNB reported during laboratory working hours and prespecified risk factors for AMR were included. The primary outcome was an ASP-oriented beneficial antimicrobial change, defined as either an escalation of an inappropriate empiric treatment or de-escalation of a broad-spectrum treatment of a susceptible organism. Main secondary outcomes were time to an appropriate treatment, antimicrobial treatment duration, length of stay (LOS) and mortality. RESULTS Included were 46 and 57 patients in the pre- and post-intervention periods, respectively. The median time to an AST-oriented beneficial change was 29.2 h vs. 49.6 h, respectively (p < 0.0001). There were no significant differences in the time to appropriate treatment, LOS or mortality. Antimicrobial treatment duration was longer during the intervention period (10 vs. 8 days, p = 0.007). AXDX failed to correctly identify pathogens in all 6 cases of polymicrobial bacteremia. In two cases patient care was potentially compromised due to inappropriate de-escalation. CONCLUSIONS AXDX implementation resulted in a 20.4-hour shorter time to an ASP-oriented beneficial antimicrobial change. This should be weighed against the higher costs, the lack of other proven clinical benefits and the potential harm from mis-identification of polymicrobial bacteremias.
Collapse
Affiliation(s)
- Tal Brosh-Nissimov
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel.
- Faculty of Health Sciences, Ben Gurion University in the Negev, Be'er Sheva, Israel.
| | - Anka Tzur
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Daniel Grupel
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
- Faculty of Health Sciences, Ben Gurion University in the Negev, Be'er Sheva, Israel
| | - Amos Cahan
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Nir Ma'aravi
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Maya Heled-Akiva
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Hasan Jawamis
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Hanna Leskes
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Erez Barenboim
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Nadav Sorek
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| |
Collapse
|
3
|
Mizusawa M, Carroll KC. Recent updates in the development of molecular assays for the rapid identification and susceptibility testing of MRSA. Expert Rev Mol Diagn 2023; 23:679-699. [PMID: 37419696 DOI: 10.1080/14737159.2023.2234823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of healthcare- and community-associated infections. Nasal carriage of MRSA is a risk factor for subsequent MRSA infections. Increased morbidity and mortality are associated with MRSA infections and screening and diagnostic tests for MRSA play an important role in clinical management. AREAS COVERED A literature search was conducted in PubMed and supplemented by citation searching. In this article, we provide a comprehensive review of molecular-based methods for MRSA screening and diagnostic tests including individual nucleic acid detection assays, syndromic panels, and sequencing technologies with a focus on their analytical performance. EXPERT OPINION Molecular based-assays for the detection of MRSA have improved in terms of accuracy and availability. Rapid turnaround enables earlier contact isolation and decolonization for MRSA. The availability of syndromic panel tests that include MRSA as a target has expanded from positive blood cultures to pneumonia and osteoarticular infections. Sequencing technologies allow detailed characterizations of novel methicillin-resistance mechanisms that can be incorporated into future assays. Next generation sequencing is capable of diagnosing MRSA infections that cannot be identified by conventional methods and metagenomic next-generation sequencing (mNGS) assays will likely move closer to implementation as front-line diagnostics in the near future.
Collapse
Affiliation(s)
- Masako Mizusawa
- Monmouth Medical Center, Rutgers University Robert Wood Johnson Medical School, Long Branch, NJ, USA
| | - Karen C Carroll
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Dare RK, Lusardi K, Pearson C, McCain KD, Daniels B, Van S, Rico JC, Painter J, Lakkad M, Rosenbaum ER, Bariola JR. Clinical Impact of Accelerate PhenoTM Rapid Blood Culture Detection System in Bacteremic Patients. Clin Infect Dis 2020; 73:e4616-e4626. [PMID: 32463864 DOI: 10.1093/cid/ciaa649] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Accelerate Pheno blood culture detection system (AXDX) provides identification (ID) and antimicrobial susceptibility testing (AST) results within 8h of blood culture growth. Limited data exists regarding its clinical impact. Other rapid platforms coupled with antimicrobial stewardship program (ASP) real-time notification (RTN) have shown improved length of stay (LOS) in bacteremia. METHODS A single-center, quasi-experimental study of adult bacteremic inpatients before/after AXDX implementation was conducted comparing clinical outcomes from 1 historical and 2 intervention cohorts (AXDX and AXDX+RTN). Primary outcome was LOS. RESULTS Of 830 bacteremic episodes, 188 (77%) of 245 historical and 308 (155 AXDX, 153 AXDX+RTN; 65%) of 585 intervention episodes were included. Median LOS was shorter with AXDX (6.3d) and AXDX+RTN (6.7d) compared to historical (8.1d; P=0.001). Achievement of optimal therapy (AOT) was more frequent (93.6% and 95.4%) and median time to optimal therapy (TTOT) was faster (1.3d and 1.4d) in AXDX and AXDX+RTN compared to historical (84.6%, P≤0.001 and 2.4d; P≤0.001) respectively. Median antimicrobial days of therapy (DOT) was shorter in both intervention arms compared to historical (6d each vs 7d; P=0.011). Median LOS benefit was most pronounced in patients with coagulase negative Staphylococcus bacteremia (5.5d and 4.5d vs 7.2d; P=0.003) in AXDX, AXDX+RTN, and historical cohorts respectively. CONCLUSIONS LOS, AOT, TTOT, and total DOT significantly improved after AXDX implementation. Addition of RTN did not show further improvement over AXDX and an already active ASP. These results suggest AXDX can be integrated into healthcare systems with an active ASP even without the resources to include RTN.
Collapse
Affiliation(s)
- R K Dare
- Division of Infectious Diseases, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - K Lusardi
- Hospital Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - C Pearson
- Division of Infectious Diseases, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - K D McCain
- Hospital Pharmacy, Wadley Regional Medical Center, Texarkana, TX, USA
| | - B Daniels
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S Van
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J C Rico
- Division of Infectious Diseases, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Painter
- Division of Pharmaceutical Evaluation and Policy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M Lakkad
- Division of Pharmaceutical Evaluation and Policy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - E R Rosenbaum
- Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J R Bariola
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|