1
|
Huletsky A, Loo VG, Longtin Y, Longtin J, Trottier S, Tremblay CL, Gilca R, Lavallée C, Brochu É, Bérubé È, Bastien M, Bernier M, Gagnon M, Frenette J, Bestman-Smith J, Deschênes L, Bergeron MG. Comparison of rectal swabs and fecal samples for the detection of Clostridioides difficile infections with a new in-house PCR assay. Microbiol Spectr 2024; 12:e0022524. [PMID: 38687067 PMCID: PMC11237655 DOI: 10.1128/spectrum.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
The detection of Clostridioides difficile infections (CDI) relies on testing the stool of patients by toxin antigen detection or PCR methods. Although PCR and antigenic methods have significantly reduced the time to results, delays in stool collection can significantly add to the turnaround time. The use of rectal swabs to detect C. difficile could considerably reduce the time to diagnosis of CDI. We developed a new rapid PCR assay for the detection of C. difficile and evaluated this PCR assay on both stool and rectal swab specimens. We recruited a total of 623 patients suspected of C. difficile infection. Stool samples and rectal swabs were collected from each patient and tested by our PCR assay. Stool samples were also tested by the cell cytotoxicity neutralization assay (CCNA) as a reference. The PCR assay detected C. difficile in 60 stool specimens and 61 rectal swabs for the 64 patients whose stool samples were positive for C. difficile by CCNA. The PCR assay detected an additional 35 and 36 stool and rectal swab specimens positive for C. difficile, respectively, for sensitivity with stools and rectal swabs of 93.8% and 95.3%, specificity of 93.7% and 93.6%, positive predictive values of 63.2% and 62.9%, and negative predictive values of 99.2% and 99.4%. Detection of C. difficile using PCR on stools or rectal swabs yielded reliable and similar results. The use of PCR tests on rectal swabs could reduce turnaround time for CDI detection, thus improving CDI management and control of C. difficile transmission. IMPORTANCE Clostridioides difficile infection (CDI) is the leading cause of healthcare-associated diarrhea, resulting in high morbidity, mortality, and economic burden. In clinical laboratories, CDI testing is currently performed on stool samples collected from patients with diarrhea. However, the diagnosis of CDI can be delayed by the time required to collect stool samples. Barriers to sample collection could be overcome by using a rectal swab instead of a stool sample. Our study showed that CDI can be identified rapidly and reliably by a new PCR assay developed in our laboratory on both stool and rectal swab specimens. The use of PCR tests on rectal swabs could reduce the time for the detection of CDI and improve the management of this infection. It should also provide a useful alternative for infection-control practitioners to better control the spread of C. difficile.
Collapse
Affiliation(s)
- Ann Huletsky
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Vivian G. Loo
- Division of Infectious Diseases, Department of Medical Microbiology, McGill University Health Centre, Montréal, Canada
- Faculty of Medicine, McGill University, Montréal, Canada
| | - Yves Longtin
- Faculty of Medicine, McGill University, Montréal, Canada
- Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Jean Longtin
- Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Sylvie Trottier
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Cécile L. Tremblay
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Rodica Gilca
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec City, Canada
- Département de risque biologique et de la santé au travail, Institut national de santé publique du Québec, Québec City, Canada
| | - Christian Lavallée
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
- Service de maladies infectieuses et de microbiologie, Département de médecine spécialisée, Hôpital Maisonneuve-Rosemont - CIUSSS de l'Est-de-l'Ile-de-Montréal, Montréal, Canada
- Département clinique de médecine de laboratoire, Centre hospitalier de l'Université de Montréal, Montréal, Canada
| | - Éliel Brochu
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Ève Bérubé
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Martine Bastien
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Marthe Bernier
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Martin Gagnon
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Johanne Frenette
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Julie Bestman-Smith
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Service de microbiologie-infectiologie, Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Louise Deschênes
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Service de microbiologie-infectiologie, Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| | - Michel G. Bergeron
- Centre de recherche en infectiologie de l’Université Laval, Québec City, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Leite S, Cotias C, Rainha KC, Santos MG, Penna B, F Moraes RF, Harmanus C, Smits WK, Ferreira EDO. Prevalence of Clostridioides difficile in dogs (Canis familiaris) with gastrointestinal disorders in Rio de Janeiro. Anaerobe 2023; 83:102765. [PMID: 37573963 DOI: 10.1016/j.anaerobe.2023.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Clostridioides difficile infections (CDI) have a high morbidity and mortality rate and have always been considered a nosocomial disease. Nonetheless, the number of cases of community-acquired CDI is increasing, and new evidence suggests additional C. difficile reservoirs exist. Pathogenic C. difficile strains have been found in livestock, domestic animals, and meat, so a zoonotic transmission has been proposed. OBJECTIVE The goal of this study was to isolate C. difficile strains in dogs at a veterinary clinic in Rio de Janeiro, Brazil, and characterize clinical and pathological findings associated with lower gastrointestinal tract disorders. METHODS Fifty stool samples and biopsy fragments from dogs were obtained and cultured in the CDBA selective medium. All suggestive C. difficile colonies were confirmed by MALDI-TOF MS and PCR (tpi gene). Vancomycin, metronidazole, moxifloxacin, erythromycin, and rifampicin were tested for antibiotic susceptibility. Biofilm, motility assays, and a PCR for the toxins (tcdA, tcdB, and cdtB), as well as ribotyping, were also performed. RESULTS Blood samples and colonic biopsy fragments were examined in C. difficile positive dogs. Ten animals (20%) tested positive for C. difficile by using stool samples, but not from biopsy fragments. Most C. difficile strains were toxigenic: six were A+B+ belonging to RT106; two were A+B+ belonging to RT014/020; and two were A-B- belonging to RT010. All strains were biofilm producers. In the motility test, 40% of strains were as motile as the positive control, CD630 (RT012). In the disc diffusion test, two strains (RT010) were resistant to erythromycin and metronidazole; and another to metronidazole (RT014/020). In terms of C. difficile clinicopathological correlations, no statistically significant morphological changes, such as pseudomembranous and "volcano" lesions, were observed. Regarding hematological data, dogs positive for C. difficile had leucopenia (p = 0.02) and lymphopenia (p = 0.03). There was a significant correlation between senility and the presence of C. difficile in the dogs studied (p = 0,02). CONCLUSIONS Although C. difficile has not been linked to canine diarrheal disorders, it appears to be more common in dogs with intestinal dysfunctions. The isolation of ribotypes frequently involved in human CDI outbreaks around the world supports the theory of C. difficile zoonotic transmission.
Collapse
Affiliation(s)
- Suzana Leite
- Departmento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes -IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Universidade Santa Úrsula, Rio de Janeiro, Brazil
| | - Carlos Cotias
- H&Diagnóstico, Veterinary Diagnosis Center, Rio de Janeiro, Brazil
| | | | | | - Bruno Penna
- Departmento de Microbiologia e Parasitologia, Instituto de Biomedicina, Universidade Federal Fluminense- UFF, Niterói, Brazil
| | | | - Céline Harmanus
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eliane de Oliveira Ferreira
- Departmento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes -IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Adamson H, Ajayi MO, Gilroy KE, McPherson MJ, Tomlinson DC, Jeuken LJC. Rapid Quantification of C. difficile Glutamate Dehydrogenase and Toxin B (TcdB) with a NanoBiT Split-Luciferase Assay. Anal Chem 2022; 94:8156-8163. [PMID: 35634999 PMCID: PMC9201815 DOI: 10.1021/acs.analchem.1c05206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
C. difficile infection (CDI) is a leading healthcare-associated
infection with a high morbidity and mortality and is a financial burden.
No current standalone point-of-care test (POCT) is sufficient for
the identification of true CDI over a disease-free carriage of C. difficile, so one is urgently required to ensure timely,
appropriate treatment. Here, two types of binding proteins, Affimers
and nanobodies, targeting two C. difficile biomarkers,
glutamate dehydrogenase (GDH) and toxin B (TcdB), are combined in
NanoBiT (NanoLuc Binary Technology) split-luciferase assays. The assays
were optimized and their performance controlling parameters were examined.
The 44 fM limit of detection (LoD), 4–5 log range and 1300-fold
signal gain of the TcdB assay in buffer is the best observed for a
NanoBiT assay to date. In the stool sample matrix, the GDH and TcdB
assay sensitivity (LoD = 4.5 and 2 pM, respectively) and time to result
(32 min) are similar to a current, commercial lateral flow POCT, but
the NanoBit assay has no wash steps, detects clinically relevant TcdB
over TcdA, and is quantitative. Development of the assay into a POCT
may drive sensitivity further and offer an urgently needed ultrasensitive
TcdB test for the rapid diagnosis of true CDI. The NanoBiTBiP (NanoBiT
with Binding Proteins) system offers advantages over NanoBiT assays
with antibodies as binding elements in terms of ease of production
and assay performance. We expect this methodology and approach to
be generally applicable to other biomarkers.
Collapse
Affiliation(s)
- Hope Adamson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Modupe O. Ajayi
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kate E. Gilroy
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael J. McPherson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Darren C. Tomlinson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lars J. C. Jeuken
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
4
|
Loderstädt U, Hagen RM, Hahn A, Frickmann H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections-A Narrative Mini-Review on Challenges in the Tropics. Trop Med Infect Dis 2021; 6:tropicalmed6020096. [PMID: 34199650 PMCID: PMC8293448 DOI: 10.3390/tropicalmed6020096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The application of modern PCR approaches for the diagnosis of bacterial gastrointestinal pathogens is on the rise due to their rapidly available results combined with high sensitivity. While multiple studies describe the ongoing implementation of this technique for routine diagnostic purposes in laboratories in Western industrialized countries, reports on successful and also sustainable respective approaches in resource-poor tropical settings are still scarce. In order to shed light on potential reasons for this marked discrepancy, this narrative review summarizes identified challenges for the application of diagnostic PCR targeting bacterial gastrointestinal pathogens from stool samples in the tropics. The identified and discussed issues comprise the lack of generally accepted definitions for (1) minimum standards regarding sample acquisition, storage and transport time for diagnostic PCR analyses in the tropics, (2) nucleic acid extraction standards allowing an optimum detection of all types of pathogens which may be responsible for gastroenteritis in the tropics, (3) validation standards to ensure comparable quality of applied diagnostic assays, and (4) cut-offs for a reliable discrimination of infection and mere colonization in areas where semi-immunity due to repeated exposition associated with poor hygiene conditions has to be expected. Further implementation research is needed to solve those issues.
Collapse
Affiliation(s)
- Ulrike Loderstädt
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Andernacher Str. 100, 56070 Koblenz, Germany;
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Correspondence: or or ; Tel.: +49-40-6947-28743
| |
Collapse
|
5
|
Tanida K, Hahn A, Frickmann H. Comparison of two commercial and one in-house real-time PCR assays for the diagnosis of bacterial gastroenteritis. Eur J Microbiol Immunol (Bp) 2020; 10:210-216. [PMID: 33279885 PMCID: PMC7753976 DOI: 10.1556/1886.2020.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The aim of the study was a comparative evaluation of in-house real-time PCR and commercial real-time PCR (Fast Track Diagnostics (FTD), ampliCube/Mikrogen) targeting enteropathogenic bacteria from stool in preparation of Regulation (EU) 2017/746 on in vitro diagnostic medical devices. Methods Both 241 stool samples from patients and 100 samples from German laboratory control schemes (“Ringversuche”) were used to comparatively assess in-house real-time PCR, the FTD bacterial gastroenteritis kit, and the ampliCube gastrointestinal bacterial panels 1&2 either with the in-house PCRs as gold standard and as a test comparison without gold standard applying latent class analysis. Sensitivity, specificity, intra- and inter-assay variation and Cohen’s kappa were assessed. Results In comparison with the gold standard, sensitivity was 75–100% for strongly positive samples, 20–100% for weakly positive samples, and specificity ranged from 96 to 100%. Latent class analysis suggested that sensitivity ranges from 81.2 to 100% and specificity from 58.5 to 100%. Cohen’s kappa varied between moderate and nearly perfect agreement, intra- and inter-assay variation was 1–3 to 1–4 Ct values. Conclusion Acceptable agreement and performance characteristics suggested replaceability of the in-house PCR assays by the commercial approaches.
Collapse
Affiliation(s)
- Konstantin Tanida
- 1Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Andreas Hahn
- 2Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Hagen Frickmann
- 1Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,2Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
6
|
Ultrasensitive Clostridioides difficile Toxin Testing for Higher Diagnostic Accuracy. J Clin Microbiol 2020; 58:JCM.01913-19. [PMID: 32269098 DOI: 10.1128/jcm.01913-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Currently available diagnostic tests for Clostridioides difficile infection (CDI) lack specificity or sensitivity, which has led to guideline recommendations for multistep testing algorithms. Ultrasensitive assays for detection of C. difficile toxins provide measurements of disease-specific markers at very low concentrations. These assays may show improved accuracy compared to that of current testing methods and offer a potential standalone solution for CDI diagnosis, although large studies of clinical performance and accuracy are lacking.
Collapse
|
7
|
Evaluation of Cycle Threshold, Toxin Concentration, and Clinical Characteristics of Clostridioides difficile Infection in Patients with Discordant Diagnostic Test Results. J Clin Microbiol 2020; 58:JCM.01681-19. [PMID: 32051264 DOI: 10.1128/jcm.01681-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile infection (CDI) is one of the most common health care-associated infections that can cause significant morbidity and mortality. CDI diagnosis involves laboratory testing in conjunction with clinical assessment. The objective of this study was to assess the performance of various C. difficile tests and to compare clinical characteristics, Xpert C. difficile/Epi (PCR) cycle threshold (CT ), and Singulex Clarity C. diff toxins A/B (Clarity) concentrations between groups with discordant test results. Unformed stool specimens from 200 hospitalized adults (100 PCR positive and 100 negative) were tested by cell cytotoxicity neutralization assay (CCNA), C. diff Quik Chek Complete (Quik Chek), Premier Toxins A and B, and Clarity. Clinical data, including CDI severity and CDI risk factors, were compared between discordant test results. Compared to CCNA, PCR had the highest sensitivity at 100% and Quik Chek had the highest specificity at 100%. Among clinical and laboratory data studied, prevalences of leukocytosis, prior antibiotic use, and hospitalizations were consistently higher across all subgroups in comparisons of toxin-positive to toxin-negative patients. Among PCR-positive samples, the median CT was lower in toxin-positive samples than in toxin-negative samples; however, CT ranges overlapped. Among Clarity-positive samples, the quantitative toxin concentration was significantly higher in toxin-positive samples than in toxin-negative samples as determined by CCNA and Quik Chek Toxin A and B. Laboratory tests for CDI vary in sensitivity and specificity. The quantitative toxin concentration may offer value in guiding CDI diagnosis and treatment. The presence of leukocytosis, prior antibiotic use, and previous hospitalizations may assist with CDI diagnosis, while other clinical parameters may not be consistently reliable.
Collapse
|
8
|
High Agreement Between an Ultrasensitive Clostridioides difficile Toxin Assay and a C. difficile Laboratory Algorithm Utilizing GDH-and-Toxin Enzyme Immunoassays and Cytotoxin Testing. J Clin Microbiol 2020; 58:JCM.01629-19. [PMID: 31776192 DOI: 10.1128/jcm.01629-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
The Singulex Clarity C. diff toxins A/B (Clarity) assay is an automated, ultrasensitive immunoassay for the detection of Clostridioides difficile toxins in stool. In this study, the performance of the Clarity assay was compared to that of a multistep algorithm using an enzyme immunoassay (EIA) for detection of glutamate dehydrogenase (GDH) and toxins A and B arbitrated by a semiquantitative cell cytotoxicity neutralization assay (CCNA). The performance of the assay was evaluated using 211 residual deidentified stool samples tested with a GDH-and-toxin EIA (C. Diff Quik Chek Complete; Techlab), with GDH-and-toxin discordant samples tested with CCNA. The stool samples were stored at -80°C before being tested with the Clarity assay. For samples discordant between Clarity and the standard-of-care algorithm, the samples were tested with PCR (Xpert C. difficile; Cepheid), and chart review was performed. The testing algorithm resulted in 34 GDH+/toxin+, 53 GDH-/toxin-, and 124 GDH+/toxin- samples, of which 39 were CCNA+ and 85 were CCNA- Clarity had 96.2% negative agreement with GDH-/toxin- samples, 100% positive agreement with GDH+/toxin+ samples, and 95.3% agreement with GDH+/toxin-/CCNA- samples. The Clarity result was invalid for one sample. Clarity agreed with 61.5% of GDH+/toxin-/CCNA+ samples, 90.0% of GDH+/toxin-/CCNA+ (high-positive) samples, and 31.6% of GDH+/toxin-/CCNA+ (low-positive) samples. The Singulex Clarity C. diff toxins A/B assay demonstrated high agreement with a testing algorithm utilizing a GDH-and-toxin EIA and CCNA. This novel automated assay may offer an accurate, stand-alone solution for C. difficile infection (CDI) diagnostics, and further prospective clinical studies are merited.
Collapse
|
9
|
Nana T, Moore C, Boyles T, Brink AJ, Cleghorn J, Devenish LM, du Toit B, Fredericks ES, Lekalakala-Mokaba MR, Maluleka C, Rajabally MN, Reubenson G, Shuping L, Swart K, Swe Han KS, Wadula J, Wojno J, Lowman W. South African Society of Clinical Microbiology Clostridioides difficile infection diagnosis, management and infection prevention and control guideline. S Afr J Infect Dis 2020; 35:219. [PMID: 34485483 PMCID: PMC8378053 DOI: 10.4102/sajid.v35i1.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a problem in both developed and developing countries and is a common hospital-acquired infection. This guideline provides evidence-based practical recommendations for South Africa and other developing countries. The scope of the guideline includes CDI diagnostic approaches; adult, paediatric and special populations treatment options; and surveillance and infection prevention and control recommendations.
Collapse
Affiliation(s)
- Trusha Nana
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Charlotte Maxeke Johannesburg Academic Hospital Microbiology Laboratory, National Health Laboratory Services, Johannesburg, South Africa
| | | | - Tom Boyles
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adrian J. Brink
- Department of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joy Cleghorn
- Life Healthcare Group, Johannesburg, South Africa
| | - Lesley M. Devenish
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infection Control Services Laboratory, National Health Laboratory Services, Johannesburg, South Africa
| | | | - Ernst S. Fredericks
- Department of Physiology, Faculty of Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Molebogeng R. Lekalakala-Mokaba
- Department of Microbiology, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Dr George Mukhari Academic Hospital Microbiology Laboratory, National Health Laboratory Services, Pretoria, South Africa
| | - Caroline Maluleka
- Department of Microbiology, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Dr George Mukhari Academic Hospital Microbiology Laboratory, National Health Laboratory Services, Pretoria, South Africa
| | | | - Gary Reubenson
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Liliwe Shuping
- Centre for Healthcare-Associated Infections, National Institute for Communicable Diseases, a division of National Health Laboratory Service, Johannesburg, South Africa
| | - Karin Swart
- Netcare Hospitals Limited, Johannesburg, South Africa
| | - Khine Swe Swe Han
- Medical Microbiology Department, Inkosi Albert Luthuli Central Hospital Academic Complex, National Health Laboratory Services, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jeannette Wadula
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Chris Hani Baragwanath Hospital Microbiology Laboratory, National Health Laboratory Services, Johannesburg, South Africa
| | | | - Warren Lowman
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, PathCare/Vermaak Pathologists, Johannesburg, South Africa
- Department of Clinical Microbiology and Infection Prevention and Control, WITS Donald Gordon Medical Centre, Johannesburg, South Africa
| |
Collapse
|
10
|
Ultrasensitive Detection of Clostridioides difficile Toxins in Stool by Use of Single-Molecule Counting Technology: Comparison with Detection of Free Toxin by Cell Culture Cytotoxicity Neutralization Assay. J Clin Microbiol 2019; 57:JCM.00719-19. [PMID: 31434724 DOI: 10.1128/jcm.00719-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Laboratory tests for Clostridioides difficile infection (CDI) rely on the detection of free toxin or molecular detection of toxin genes. The Singulex Clarity C. diff toxins A/B assay is a rapid, automated, and ultrasensitive assay that detects C. difficile toxins A and B in stool. We compared CDI assays across two prospective multicenter studies to set a cutoff for the Clarity assay and to independently validate the performance compared with that of a cell culture cytotoxicity neutralization assay (CCCNA). The cutoff was set by two sites testing fresh samples from 897 subjects with suspected CDI and then validated at four sites testing fresh samples from 1,005 subjects with suspected CDI. CCCNA testing was performed at a centralized laboratory. Samples with discrepant results between the Clarity assay and CCCNA were retested with CCCNA when the Clarity result agreed with that of at least one comparator method; toxin enzyme immunoassays (EIA), glutamate dehydrogenase (GDH) detection, and PCR were performed on all samples. The cutoff for the Clarity assay was set at 12.0 pg/ml. Compared to results with CCCNA, the Clarity assay initially had 85.2% positive agreement and 92.4% negative agreement. However, when samples with discrepant results between the Clarity assay and CCCNA in the validation study were retested by CCCNA, 13/17 (76.5%) Clarity-negative but CCCNA-positive samples (Clarity+/CCCNA-) became CCCNA-, and 5/26 (19.2%) Clarity+/CCCNA- samples became CCCNA+, resulting in a 96.3% positive agreement and 93.0% negative agreement between Clarity and CCCNA results. The toxin EIA had 59.8% positive agreement with CCCNA. The Clarity assay was the most sensitive free-toxin immunoassay, capable of providing CDI diagnosis in a single-step solution. A different CCCNA result was reported for 42% of retested samples, increasing the positive agreement between Clarity and CCCNA from 85.2% to 96.3% and indicating the challenges of comparing free-toxin results to CCCNA results as a reference standard.
Collapse
|
11
|
Increased Clinical Specificity with Ultrasensitive Detection of Clostridioides difficile Toxins: Reduction of Overdiagnosis Compared to Nucleic Acid Amplification Tests. J Clin Microbiol 2019; 57:JCM.00945-19. [PMID: 31434726 DOI: 10.1128/jcm.00945-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile infection (CDI) is one of the most common health care-associated infections, resulting in significant morbidity, mortality, and economic burden. Diagnosis of CDI relies on the assessment of clinical presentation and laboratory tests. We evaluated the clinical performance of ultrasensitive single-molecule counting technology for detection of C. difficile toxins A and B. Stool specimens from 298 patients with suspected CDI were tested with the nucleic acid amplification test (NAAT; BD MAX Cdiff assay or Xpert C. difficile assay) and Singulex Clarity C. diff toxins A/B assay. Specimens with discordant results were tested with the cell cytotoxicity neutralization assay (CCNA), and the results were correlated with disease severity and outcome. There were 64 NAAT-positive and 234 NAAT-negative samples. Of the 32 NAAT+/Clarity- and 4 NAAT-/Clarity+ samples, there were 26 CCNA- and 4 CCNA- samples, respectively. CDI relapse was more common in NAAT+/toxin+ patients than in NAAT+/toxin- and NAAT-/toxin- patients. The clinical specificity of Clarity and NAAT was 97.4% and 89.0%, respectively, and overdiagnosis was more than three times more common in NAAT+/toxin- than in NAAT+/toxin+ patients. The Clarity assay was superior to NAATs for the diagnosis of CDI, by reducing overdiagnosis and thereby increasing clinical specificity, and the presence of toxins was associated with negative patient outcomes.
Collapse
|