1
|
Toriro R, Pallett SJC, Nevin W, Ross TM, Hale I, Routledge M, Bennett C, Knott J, Burns DS, Edwards T, O'Shea MK, Fletcher TE, Beeching NJ, Woolley SD. Prevalence of extended-spectrum β-lactamase-producing Enterobacterales and carbapenemase-resistant Enterobacterales in British military cohorts. BMJ Mil Health 2024:military-2024-002837. [PMID: 39461740 DOI: 10.1136/military-2024-002837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Travel to resource-limited settings is a known risk for acquisition of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE) and carbapenem-resistant Enterobacterales (CRE), which are both associated with increased morbidity and mortality. We investigated the ESBL-PE and CRE baseline prevalence in British service personnel (SP). METHODS SP provided faecal samples for research projects in several different settings, between September 2021 and April 2022. Bacterial colonies from faecal isolates were recovered from incubated ChromID ESBL plates (bioMérieux, Marcy-l'Étoile, France) and DNA extracted using Qiagen DNeasy extraction kits (Qiagen, UK). PCR to identify β-lactamase and CRE encoding genes was performed using the Rotor-Gene Q (RGQ) (Qiagen, UK), with positivity detected by RGQ software. Phenotypic assessment of antimicrobial susceptibility was not performed. RESULTS Out of 250 personnel approached, 239 (85.5% men, median (IQR) age 31 (26-37) years) provided faecal samples suitable for analysis. The ESBL prevalence was 40/239 (16.7%), with ESBL-producing Escherichia coli detected in 39 (16.3%) samples and ESBL-producing Klebsiella pneumoniae in 1 (0.4%) sample. Combinations including Temoniera, sulfhydryl reagent variable (SHV), cefotaxime hydrolysing β-lactamase (Munich) (CTX-M) 1 and CTX-M 9 genes were detected in 18 (7.5%), 33 (13.8%) 16 (6.7%) and 8 (3.3%) samples, respectively. E. coli samples had mixtures of all four genotypes with SHV predominating. One (0.4%) sample carried all four gene types and the only K. pneumoniae sample carried a single SHV gene. No CRE were detected. CONCLUSIONS The prevalence of ESBL-PE in cohorts of SP closely matches that of civilian populations in England; however, we noted differences in ESBL genotype distribution. Potential exposure risks for SP from international travel and occupational trauma emphasise the need for repeated surveillance to characterise and detect changes in acquisition epidemiology and carriage of ESBL. Such prospective data have important antimicrobial stewardship implications in optimising clinical outcomes, controlling resistance and guiding empirical antibiotic formulary policy recommendations.
Collapse
Affiliation(s)
- Romeo Toriro
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | | | - W Nevin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - T M Ross
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - I Hale
- 21 Multi-Role Medical Regiment, Queen Elizabeth Barracks, Strensall, York, UK
| | - M Routledge
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C Bennett
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - J Knott
- 12 Armoured Brigade Combat Team, Tidworth, UK
| | - D S Burns
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
- Department of Infection and Tropical Medicine, Heartlands Hospital, Birmingham, Birmingham, UK
| | - T Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - M K O'Shea
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - T E Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - N J Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - S D Woolley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
2
|
Hassanain W, Johnson CL, Faulds K, Keegan N, Graham D. Ultrasensitive Dual ELONA/SERS-RPA Multiplex Diagnosis of Antimicrobial Resistance. Anal Chem 2024; 96:12093-12101. [PMID: 38975860 PMCID: PMC11270532 DOI: 10.1021/acs.analchem.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Antimicrobial resistance (AMR) is a significant global health threat concern, necessitating healthcare practitioners to accurately prescribe the most effective antimicrobial agents with correct doses to combat resistant infections. This is necessary to improve the therapeutic outcomes for patients and prevent further increase in AMR. Consequently, there is an urgent need to implement rapid and sensitive clinical diagnostic methods to identify resistant pathogenic strains and monitor the efficacy of antimicrobials. In this study, we report a novel proof-of-concept magnetic scaffold-recombinase polymerase amplification (RPA) technique, coupled with an enzyme-linked oligonucleotide assay (ELONA) and surface-enhanced Raman scattering (SERS) detection, aimed at selectively amplifying and detecting the DNA signature of three resistant carbapenemase genes, VIM, KPC, and IMP. To achieve this, streptavidin-coated magnetic beads were functionalized with biotin-modified forward primers. RPA was conducted on the surface of the beads, resulting in an immobilized duplex amplicon featuring a single overhang tail specific to each gene. These tails were subsequently hybridized with recognition HRP probes conjugated to a complementary single-stranded oligonucleotide and detected colorimetrically. Additionally, they underwent hybridization with similar selective SERS probes and were measured using a handheld Raman spectrometer. The resulting quantification limits were at subpicomolar level for both assays, allowing the potential for early diagnosis. Moreover, we demonstrated the platform capability to conduct a multiplex RPA-SERS detection of the three genes in a single tube. Compared to similar approaches like PCR, RPA offers advantages of speed, affordability, and isothermal operation at 37 °C, eliminating the need for a thermal cycler. The whole assay was completed within <2 h. Therefore, this novel magnetic scaffold ELONA/SERS-RPA platform, for DNA detection, demonstrated excellent capability for the rapid monitoring of AMR in point-of-care applications, in terms of sensitivity, portability, and speed of analysis.
Collapse
Affiliation(s)
- Waleed
A. Hassanain
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K.
| | - Christopher L. Johnson
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle-Upon-Tyne NE2 4HH, U.K.
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K.
| | - Neil Keegan
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle-Upon-Tyne NE2 4HH, U.K.
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K.
| |
Collapse
|
3
|
Diotallevi A, Buffi G, Barocci S, Ceccarelli M, Bencardino D, Andreoni F, Orlandi C, Ferri M, Vandini D, Menzo S, Carlotti E, Casabianca A, Magnani M, Galluzzi L. Rapid monitoring of SARS-CoV-2 variants of concern through high-resolution melt analysis. Sci Rep 2023; 13:21598. [PMID: 38062105 PMCID: PMC10703772 DOI: 10.1038/s41598-023-48929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The current global pandemic of COVID-19 is characterized by waves of infection due to the emergence of new SARS-CoV-2 variants carrying mutations on the Spike (S) protein gene. Since autumn 2020 many Variants of Concern (VOC) have been reported: Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, Omicron/B.1.1.529, and sublineages. Surveillance of genomic variants is currently based on whole-genome sequencing (WGS) of viral genomes on a random fraction of samples positive to molecular tests. WGS involves high costs, extended analysis time, specialized staff, and expensive instruments compared to a PCR-based test. To rapidly identify the VOCs in positive samples, six assays based on real-time PCR and high-resolution melting (HRM) were designed on the S gene and applied to 120 oro/nasopharyngeal swab samples collected from October 2020 to June 2022 (106 positive and 14 negative samples). Overall, the assays showed 100% specificity and sensitivity compared with commercial PCR tests for COVID-19. Moreover, 104 samples out of 106 (98.1%) were correctly identified as follows: 8 Wuhan (wild type), 12 Alpha, 23 Delta, 46 Omicron BA.1/BA.1.1, 15 Omicron BA.2/BA.4/BA.5. With our lab equipment, about 10 samples can be processed every 3 h at the cost of less than € 10 ($ 10.60) per sample, including RNA extraction. The implementation of this approach could help local epidemiological surveillance and clinical decision-making.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy.
| | - Gloria Buffi
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
| | - Simone Barocci
- Department of Clinical Pathology, Azienda Sanitaria Territoriale (AST) Pesaro e Urbino, Marche, 61029, Urbino, PU, Italy
| | - Marcello Ceccarelli
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
- Department of Clinical Pathology, Azienda Sanitaria Territoriale (AST) Pesaro e Urbino, Marche, 61029, Urbino, PU, Italy
| | - Daniela Bencardino
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
| | - Francesca Andreoni
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
- Department of Clinical Pathology, Azienda Sanitaria Territoriale (AST) Pesaro e Urbino, Marche, 61029, Urbino, PU, Italy
| | - Chiara Orlandi
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
| | - Marilisa Ferri
- Department of Clinical Pathology, Azienda Sanitaria Territoriale (AST) Pesaro e Urbino, Marche, 61029, Urbino, PU, Italy
| | - Daniela Vandini
- Department of Clinical Pathology, Azienda Sanitaria Territoriale (AST) Pesaro e Urbino, Marche, 61029, Urbino, PU, Italy
| | - Stefano Menzo
- Virology Laboratory, Azienda Ospedaliero Universitaria delle Marche, 60126, Ancona, AN, Italy
| | - Eugenio Carlotti
- Department of Prevention, Azienda Sanitaria Territoriale (AST) Pesaro e Urbino Marche, 61029, Urbino, PU, Italy
| | - Anna Casabianca
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
| | - Mauro Magnani
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
| | - Luca Galluzzi
- Section of Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 60132, Fano, PU, Italy
| |
Collapse
|
4
|
A high-resolution melt curve toolkit to identify lineage-defining SARS-CoV-2 mutations. Sci Rep 2023; 13:3887. [PMID: 36890186 PMCID: PMC9994400 DOI: 10.1038/s41598-023-30754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) variants of concern (VOCs), with mutations linked to increased transmissibility, vaccine escape and virulence, has necessitated the widespread genomic surveillance of SARS-CoV-2. This has placed a strain on global sequencing capacity, especially in areas lacking the resources for large scale sequencing activities. Here we have developed three separate multiplex high-resolution melting assays to enable the identification of Alpha, Beta, Delta and Omicron VOCs. The assays were evaluated against whole genome sequencing on upper-respiratory swab samples collected during the Alpha, Delta and Omicron [BA.1] waves of the UK pandemic. The sensitivities of the eight individual primer sets were all 100%, and specificity ranged from 94.6 to 100%. The multiplex HRM assays have potential as a tool for high throughput surveillance of SARS-CoV-2 VOCs, particularly in areas with limited genomics facilities.
Collapse
|
5
|
Edwards T, Williams CT, Olwala M, Andang'o P, Otieno W, Nalwa GN, Akindolire A, Cubas-Atienzar AI, Ross T, Tongo OO, Adams ER, Nabwera H, Allen S. Molecular surveillance reveals widespread colonisation by carbapenemase and extended spectrum beta-lactamase producing organisms in neonatal units in Kenya and Nigeria. Antimicrob Resist Infect Control 2023; 12:14. [PMID: 36814315 PMCID: PMC9945588 DOI: 10.1186/s13756-023-01216-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES Neonatal sepsis, a major cause of death amongst infants in sub-Saharan Africa, is often gut derived. Gut colonisation by Enterobacteriaceae producing extended spectrum beta-lactamase (ESBL) or carbapenemase enzymes can lead to antimicrobial-resistant (AMR) or untreatable infections. We sought to explore the rates of colonisation by ESBL or carbapenemase producers in two neonatal units (NNUs) in West and East Africa. METHODS Stool and rectal swab samples were taken at multiple timepoints from newborns admitted to the NNUs at the University College Hospital, Ibadan, Nigeria and the Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, western Kenya. Samples were tested for ESBL and carbapenemase genes using a previously validated qPCR assay. Kaplan-Meier survival analysis was used to examine colonisation rates at both sites. RESULTS In total 119 stool and rectal swab samples were taken from 42 infants admitted to the two NNUs. Colonisation with ESBL (37 infants, 89%) was more common than with carbapenemase producers (26, 62.4%; P = 0.093). Median survival time before colonisation with ESBL organisms was 7 days and with carbapenemase producers 16 days (P = 0.035). The majority of ESBL genes detected belonged to the CTX-M-1 (36/38; 95%), and CTX-M-9 (2/36; 5%) groups, and the most prevalent carbapenemase was blaNDM (27/29, 93%). CONCLUSIONS Gut colonisation of neonates by AMR organisms was common and occurred rapidly in NNUs in Kenya and Nigeria. Active surveillance of colonisation will improve the understanding of AMR in these settings and guide infection control and antibiotic prescribing practice to improve clinical outcomes.
Collapse
Affiliation(s)
- Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | - Macrine Olwala
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Jomo Kenyatta Highway Kaloleni Kisumu KE Central, Maseno, Kenya
| | - Pauline Andang'o
- Department of Public Health, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Walter Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Jomo Kenyatta Highway Kaloleni Kisumu KE Central, Maseno, Kenya
| | - Grace N Nalwa
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Jomo Kenyatta Highway Kaloleni Kisumu KE Central, Maseno, Kenya
| | | | - Ana I Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Toby Ross
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
6
|
Byrne RL, Cocker D, Alyayyoussi G, Mphasa M, Charles M, Mandula T, Williams CT, Rigby J, Hearn J, Feasey N, Adams ER, Edwards T. A novel, magnetic bead-based extraction method for the isolation of antimicrobial resistance genes with a case study in river water in Malawi. J Appl Microbiol 2022; 133:3191-3200. [PMID: 35946113 PMCID: PMC9804433 DOI: 10.1111/jam.15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 01/07/2023]
Abstract
AIMS The environment is increasingly recognized as an important reservoir of antimicrobial resistance genes (ARGs), which can be identified using molecular platforms. Yet, environmental surveillance remains an underutilised tool as there is no agreement on the best strategy for sample processing. We aim to develop a low-cost extraction method independent to commercial kits or reagents. METHODS AND RESULTS We present a novel, magnetic bead-based method for the isolation of ARGs from river water named MagnaExtract. We present this with analytic limit of detection as well as a case study in Southern Malawi. Here we compare the DNA yield from MagnaExtract with commercially available QIAGEN kits and the crude boil and spin method, using a high-resolution melt analysis PCR panel designed for the detection of third-generation cephalosporin and carbapenem-resistant genes from 98 water samples. CONCLUSION The MagnaExtract method is comparable, and in some instance's superior to commercially available kits for the isolation of ARGs from river water samples. SIGNIFICANCE AND IMPACT OF THE STUDY The MagnaExtract approach offers a simple, affordable, high yielding extraction method that could be used for the detection of ARGs from river water samples in surveillance campaigns in East Africa.
Collapse
Affiliation(s)
- Rachel L. Byrne
- Centre for Drugs and DiagnosticsLiverpool School of Tropical MedicineLiverpoolUK
| | - Derek Cocker
- Malawi Liverpool Wellcome TrustBlantyreMalawi,Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | - Ghaith Alyayyoussi
- Centre for Drugs and DiagnosticsLiverpool School of Tropical MedicineLiverpoolUK
| | | | | | | | | | - Jonathan Rigby
- Malawi Liverpool Wellcome TrustBlantyreMalawi,Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | - Jack Hearn
- Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Nicholas Feasey
- Malawi Liverpool Wellcome TrustBlantyreMalawi,Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | - Emily R. Adams
- Centre for Drugs and DiagnosticsLiverpool School of Tropical MedicineLiverpoolUK
| | - Thomas Edwards
- Centre for Drugs and DiagnosticsLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
7
|
Rubtsova MY, Filippova AA, Fursova NK, Grigorenko VG, Presnova GV, Ulyashova MM, Egorov AM. Quantitative Determination of Beta-Lactamase mRNA in the RNA Transcripts of Antibiotic-Resistant Bacteria Using Colorimetric Biochips. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ghorbani J, Hashemi FB, Jabalameli F, Emaneini M, Beigverdi R. Multiplex detection of five common respiratory pathogens from bronchoalveolar lavages using high resolution melting curve analysis. BMC Microbiol 2022; 22:141. [PMID: 35590256 PMCID: PMC9118692 DOI: 10.1186/s12866-022-02558-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background The study describes the application of the multiplex high-resolution melting curve (MHRM) assay for the simultaneous detection of five common bacterial pathogens (Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli) directly from bronchoalveolar lavage samples. Results Our MHRM assay successfully identified all five respiratory pathogens in less than 5 h, with five separate melting curves with specific melt peak temperatures (Tm). The different Tm were characterized by peaks of 78.1 ± 0.4 °C for S. aureus, 83.3 ± 0.1 °C for A. baumannii, 86.7 ± 0.2 °C for E. coli, 90.5 ± 0.1 °C for K. pneumoniae, 94.5 ± 0.2 °C for P. aeruginosa. The overall sensitivity and specificity of MHRM were 100% and 88.8–100%, respectively. Conclusions Our MHRM assay offers a simple and fast alternative to culture approach for simultaneous detection of five major bacterial lower respiratory tract infection pathogens. Utilization of this assay can help clinicians initiate prompt and appropriate antimicrobial treatment, towards reducing the morbidity and mortality of severe respiratory infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02558-2.
Collapse
Affiliation(s)
- Jaber Ghorbani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 6, 100 Poursina St., Keshavarz Blvd., Tehran, Iran
| | - Farhad Bonakdar Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 6, 100 Poursina St., Keshavarz Blvd., Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 6, 100 Poursina St., Keshavarz Blvd., Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 6, 100 Poursina St., Keshavarz Blvd., Tehran, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 6, 100 Poursina St., Keshavarz Blvd., Tehran, Iran. .,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Edwards T, Heinz E, van Aartsen J, Howard A, Roberts P, Corless C, Fraser AJ, Williams CT, Bulgasim I, Cuevas LE, Parry CM, Roberts AP, Adams ER, Mason J, Hubbard ATM. Piperacillin/tazobactam-resistant, cephalosporin-susceptible Escherichia coli bloodstream infections are driven by multiple acquisition of resistance across diverse sequence types. Microb Genom 2022; 8. [PMID: 35404783 PMCID: PMC9453079 DOI: 10.1099/mgen.0.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to piperacillin/tazobactam (TZP) in Escherichia coli has predominantly been associated with mechanisms that confer resistance to third-generation cephalosporins. Recent reports have identified E. coli strains with phenotypic resistance to piperacillin/tazobactam but susceptibility to third-generation cephalosporins (TZP-R/3GC-S). In this study we sought to determine the genetic diversity of this phenotype in E. coli (n=58) isolated between 2014–2017 at a single tertiary hospital in Liverpool, UK, as well as the associated resistance mechanisms. We compare our findings to a UK-wide collection of invasive E. coli isolates (n=1509) with publicly available phenotypic and genotypic data. These data sets included the TZP-R/3GC-S phenotype (n=68), and piperacillin/tazobactam and third-generation cephalosporin-susceptible (TZP-S/3GC-S, n=1271) phenotypes. The TZP-R/3GC-S phenotype was displayed in a broad range of sequence types, which was mirrored in the same phenotype from the UK-wide collection, and the overall diversity of invasive E. coli isolates. The TZP-R/3GC-S isolates contained a diverse range of plasmids, indicating multiple acquisition events of TZP resistance mechanisms rather than clonal expansion of a particular plasmid or sequence type. The putative resistance mechanisms were equally diverse, including hyperproduction of TEM-1, either via strong promoters or gene amplification, carriage of inhibitor-resistant β-lactamases, and an S133G blaCTX-M-15 mutation detected for the first time in clinical isolates. Several of these mechanisms were present at a lower abundance in the TZP-S/3GC-S isolates from the UK-wide collection, but without the associated phenotypic resistance to TZP. Eleven (19%) of the isolates had no putative mechanism identified from the genomic data. Our findings highlight the complexity of this cryptic phenotype and the need for continued phenotypic monitoring, as well as further investigation to improve detection and prediction of the TZP-R/3GC-S phenotype from genomic data.
Collapse
Affiliation(s)
- Thomas Edwards
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jon van Aartsen
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Alex Howard
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Paul Roberts
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Caroline Corless
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Alice J. Fraser
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher T. Williams
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Issra Bulgasim
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Luis E. Cuevas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher M. Parry
- Alder Hey Children’s NHS Foundation Trust, Liverpool, L12 2AP, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Emily R. Adams
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jenifer Mason
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Alasdair T. M. Hubbard
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
10
|
Renaud C, Kollef MH. Classical and Molecular Techniques to Diagnose HAP/VAP. Semin Respir Crit Care Med 2022; 43:219-228. [PMID: 35042263 DOI: 10.1055/s-0041-1739359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nosocomial pneumonia, including hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), are the most common nosocomial infections occurring in critically ill patients requiring intensive care. However, challenges exist in making a timely and accurate diagnosis of HAP and VAP. Under diagnosis of HAP and VAP can result in greater mortality risk, especially if accompanied by delays in the administration of appropriate antimicrobial treatment. Over diagnosis of HAP and VAP results in the unnecessary administration of broad spectrum antibiotics that can lead to further escalation of antibiotic resistance. Optimal diagnosis and management of HAP and VAP require a systematic approach that combines clinical and radiographic assessments along with proper microbiologic techniques. The use of more invasive sampling methods (bronchoalveolar lavage and protected specimen brush) may enhance specimen collection resulting in more specific diagnoses to limit unnecessary antibiotic exposure. Molecular techniques, currently in use and investigational technique, may improve the diagnosis of HAP and VAP by allowing more rapid identification of offending pathogens, if present, thus increasing both appropriate antibiotic treatment and avoiding unnecessary drug exposure.
Collapse
Affiliation(s)
- Cherie Renaud
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Cubas-Atienzar AI, Williams CT, Karkey A, Dongol S, Sulochana M, Rajendra S, Hobbs G, Evans K, Musicha P, Feasey N, Cuevas LE, Adams ER, Edwards T. A novel air-dried multiplex high-resolution melt assay for the detection of extended-spectrum β-lactamase and carbapenemase genes. J Glob Antimicrob Resist 2021; 27:123-131. [PMID: 34482019 PMCID: PMC8692233 DOI: 10.1016/j.jgar.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES This study aimed to develop and evaluate a novel air-dried high-resolution melt (HRM) assay to detect eight major extended-spectrum β-lactamase (ESBL) (blaSHV and blaCTX-M groups 1 and 9) and carbapenemase (blaNDM, blaIMP, blaKPC, blaVIM and blaOXA-48-like) genes that confer resistance to cephalosporins and carbapenems. METHODS The assay was evaluated using 439 DNA samples extracted from bacterial isolates from Nepal, Malawi and the UK and 390 clinical isolates from Nepal with known antimicrobial susceptibility. Assay reproducibility was evaluated across five different real-time quantitative PCR (qPCR) instruments [Rotor-Gene® Q, QuantStudioTM 5, CFX96, LightCycler® 480 and Magnetic Induction Cycler (Mic)]. Assay stability was also assessed under different storage temperatures (6.2 ± 0.9°C, 20.4 ± 0.7°C and 29.7 ± 1.4°C) at six time points over 8 months. RESULTS The sensitivity and specificity (with 95% confidence intervals) for detecting ESBL and carbapenemase genes was 94.7% (92.5-96.5%) and 99.2% (98.8-99.5%) compared with the reference gel-based PCR and sequencing and 98.3% (97.0-99.3%) and 98.5% (98.0-98.9%) compared with the original HRM wet PCR mix format. Overall agreement was 91.1% (90.0-92.9%) when predicting phenotypic resistance to cefotaxime and meropenem among Enterobacteriaceae isolates. We observed almost perfect inter-machine reproducibility of the air-dried HRM assay, and no loss of sensitivity occurred under all storage conditions and time points. CONCLUSION We present a ready-to-use air-dried HRM PCR assay that offers an easy, thermostable, fast and accurate tool for the detection of ESBL and carbapenemase genes in DNA samples to improve antimicrobial resistance detection.
Collapse
Affiliation(s)
- Ana I Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Abhilasha Karkey
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Sabina Dongol
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Manandhar Sulochana
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Shrestha Rajendra
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Glyn Hobbs
- Liverpool John Moores University, Liverpool, UK
| | - Katie Evans
- Liverpool John Moores University, Liverpool, UK
| | | | - Nicholas Feasey
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Luis E Cuevas
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
12
|
Rapid high-resolution melting genotyping scheme for Escherichia coli based on MLST derived single nucleotide polymorphisms. Sci Rep 2021; 11:16572. [PMID: 34400722 PMCID: PMC8368041 DOI: 10.1038/s41598-021-96148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022] Open
Abstract
Routinely used typing methods including MLST, rep-PCR and whole genome sequencing (WGS) are time-consuming, costly, and often low throughput. Here, we describe a novel mini-MLST scheme for Eschericha coli as an alternative method for rapid genotyping. Using the proposed mini-MLST scheme, 10,946 existing STs were converted into 1,038 Melting Types (MelTs). To validate the new mini-MLST scheme, in silico analysis was performed on 73,704 strains retrieved from EnteroBase resulting in discriminatory power D = 0.9465 (CI 95% 0.9726-0.9736) for mini-MLST and D = 0.9731 (CI 95% 0.9726-0.9736) for MLST. Moreover, validation on clinical isolates was conducted with a significant concordance between MLST, rep-PCR and WGS. To conclude, the great portability, efficient processing, cost-effectiveness, and high throughput of mini-MLST represents immense benefits, even when accompanied with a slightly lower discriminatory power than other typing methods. This study proved mini-MLST is an ideal method to screen and subgroup large sets of isolates and/or quick strain typing during outbreaks. In addition, our results clearly showed its suitability for prospective surveillance monitoring of emergent and high-risk E. coli clones'.
Collapse
|
13
|
Dehbashi S, Tahmasebi H, Alikhani MY, Keramat F, Arabestani MR. Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infect Drug Resist 2020; 13:2037-2052. [PMID: 32636657 PMCID: PMC7335274 DOI: 10.2147/idr.s255292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background There are various phenotypic methods for identifying class B and class A β-lactamase enzymes in Pseudomonas aeruginosa. The purpose of this study was to compare the sensitivity and specificity of different phenotypic methods with HRMA assay to detect β-lactamase-producing P. aeruginosa strains. Methods Eighty-eight of P. aeruginosa isolates were collected from different specimens. Conventional double-disk test (DDT) and EDTA-imipenem microbiological (EIM) were performed to detect ESBL and MBL-producing strains, respectively. Meanwhile, the Modified Hodge test and Carba-NP test were performed on all carbapenem-resistant strains. HRMA method and sensitivity and specificity of primers were determined based on the melt curve temperature range. In all comparisons, PCR was considered as the gold standard. Results Of the 402 isolates collected from different clinical specimens, 88 isolates of P. aeruginosa were identified. However, 43 strains were (48.88%) ESBL-producing, and 7 strains (7.95%) were MBL-producing. Also, using the Modified Hodge test and Carba-NP method, 11 (12.5%) and 19 (21.59%) strains were carbapenemase-producing, respectively. The results of the HRMA test revealed that genes coding for bla SHV, bla TEM, bla KPC, bla IMP, bla VIM, and bla GES were detected in 44.31%, 22.72%, 13.63%, 14.7%, 5.6%, and 2.27% of P. aeruginosa isolates. Nonetheless, for bla KPC and bla GES genes, sensitivity and specificity of the Carba-NP test were 90.47%, 94.87%, and 83.36%, 94.80%, respectively. However, sensitivity and specificity of MHT was 91.66%, 98.70%, and 77.77%, 96.42%, respectively. For bla SHV and bla TEM genes, sensitivity and specificity of DDT were 95.55%, 95.55%, and 86%, 83.50%, respectively. However, sensitivity and specificity of EMI were 77.77%, 97.59%, and 91.66%, 97.43% for bla VIM and bla IMP, respectively. Conclusion The HRMA is a powerful, accurate, closed-tube, rapid method for detecting β-lactamase genes in P. aeruginosa. The high sensitivity and specificity of this method, along with phenotypic tests, play a useful role in increasing the predictive value of clinical reports.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- Microbiology Department, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Yousef Alikhani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|