1
|
Shropshire WC, Amiji H, Bremer J, Selvaraj Anand S, Strope B, Sahasrabhojane P, Gohel M, Aitken S, Spitznogle S, Zhan X, Kim J, Greenberg DE, Shelburne SA. Genetic determinants underlying the progressive phenotype of β-lactam/β-lactamase inhibitor resistance in Escherichia coli. Microbiol Spectr 2023; 11:e0222123. [PMID: 37800937 PMCID: PMC10715226 DOI: 10.1128/spectrum.02221-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The increased feasibility of whole-genome sequencing has generated significant interest in using such molecular diagnostic approaches to characterize difficult-to-treat, antimicrobial-resistant (AMR) infections. Nevertheless, there are current limitations in the accurate prediction of AMR phenotypes based on existing AMR gene database approaches, which primarily correlate a phenotype with the presence/absence of a single AMR gene. Our study utilized a large cohort of cephalosporin-susceptible Escherichia coli bacteremia samples to determine how increasing the dosage of narrow-spectrum β-lactamase-encoding genes in conjunction with other diverse β-lactam/β-lactamase inhibitor (BL/BLI) genetic determinants contributes to progressively more severe BL/BLI phenotypes. We were able to characterize the complexity of the genetic mechanisms underlying progressive BL/BLI resistance including the critical role of β-lactamase encoding gene amplification. For the diverse array of AMR phenotypes with complex mechanisms involving multiple genomic factors, our study provides an example of how composite risk scores may improve understanding of AMR genotype/phenotype correlations.
Collapse
Affiliation(s)
- William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hatim Amiji
- Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, Connecticut, USA
| | - Jordan Bremer
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Selvalakshmi Selvaraj Anand
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, Texas, USA
| | - Benjamin Strope
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, Texas, USA
| | - Pranoti Sahasrabhojane
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marc Gohel
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Spitznogle
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E. Greenberg
- Department of Microbiology, UT Southwestern, Dallas, Texas, USA
- Department of Internal Medicine, UT Southwestern, Dallas, Texas, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Hujer AM, Bethel CR, Taracila MA, Marshall SH, Rojas LJ, Winkler ML, Painter RE, Domitrovic TN, Watkins RR, Abdelhamed AM, D’Souza R, Mack AR, White RC, Clarke T, Fouts DE, Jacobs MR, Young K, Bonomo RA. Imipenem/Relebactam Resistance in Clinical Isolates of Extensively Drug Resistant Pseudomonas aeruginosa: Inhibitor-Resistant β-Lactamases and Their Increasing Importance. Antimicrob Agents Chemother 2022; 66:e0179021. [PMID: 35435707 PMCID: PMC9112901 DOI: 10.1128/aac.01790-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES β-lactamases, intrinsic PDC and OXA β-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES β-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 μM, 23 ± 2 μM, and 21 ± 2 μM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.
Collapse
Affiliation(s)
- Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Laura J. Rojas
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Marisa L. Winkler
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - T. Nicholas Domitrovic
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Richard R. Watkins
- Division of Infectious Diseases, Cleveland Clinic Akron General, Akron, Ohio, USA
| | - Ayman M. Abdelhamed
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | - Michael R. Jacobs
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Senior Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|