1
|
Goldstein E, Moss E, Bennett-Slater S, Ferguson L, McInally C, McHugh M, Maxwell A, Winter A, Gunson RN. Impact of molecular ciprofloxacin resistance testing in management of gonorrhoea in a large urban clinic. Sex Transm Infect 2024; 100:226-230. [PMID: 38702191 DOI: 10.1136/sextrans-2023-056099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/21/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES Antibiotic resistance in gonorrhoea is of significant public health concern with the emergence of resistance to last-line therapies such as ceftriaxone. Despite around half of Neisseria gonorrhoeae isolates tested in the UK being susceptible to ciprofloxacin, very little ciprofloxacin is used in clinical practice. Testing for the S91F mutation associated with ciprofloxacin resistance is now available in CE-marked assays and may reduce the requirement for ceftriaxone, but many patients are treated empirically, or as sexual contacts, which may limit any benefit. We describe the real-world impact of such testing on antimicrobial use and clinical outcomes in people found to have gonorrhoea in a large urban UK sexual health clinic. METHODS Molecular ciprofloxacin resistance testing (ResistancePlus GC assay (SpeeDx)) was undertaken as an additional test after initial diagnosis (m2000 Realtime CT/NG assay (Abbott Molecular)) in those not already known to have had antimicrobial treatment. Data from a 6-month period (from March to September 2022) were analysed to determine treatment choice and treatment outcome. RESULTS A total of 998 clinical samples tested positive for N. gonorrhoeae in 682 episodes of infection. Of the 560 (56%) samples eligible for resistance testing, 269 (48.0%) were reported as wild-type, 180 (32.1%) were predicted to be resistant, 63 (11.3%) had an indeterminate resistance profile, and in 48 (8.6%) samples, N. gonorrhoeae was not detected. Ciprofloxacin was prescribed in 172 (75%) of 228 episodes in which the wild-type strain was detected. Four (2%) of those treated with ciprofloxacin had a positive test-of-cure sample by NAAT, with no reinfection risk. All four had ciprofloxacin-susceptible infection by phenotypic antimicrobial susceptibility testing. CONCLUSIONS In routine practice in a large UK clinic, molecular ciprofloxacin resistance testing led to a significant shift in antibiotic use, reducing use of ceftriaxone. Testing can be targeted to reduce unnecessary additional testing. Longer term impact on antimicrobial resistance requires ongoing surveillance.
Collapse
Affiliation(s)
- Emily Goldstein
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Elizabeth Moss
- Sandyford Sexual Health Services, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Susan Bennett-Slater
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Lynne Ferguson
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Carol McInally
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Martin McHugh
- Scottish Bacterial STI Reference Laboratory, NHS Lothian, Edinburgh, UK
| | - Alexandra Maxwell
- Sandyford Sexual Health Services, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Andrew Winter
- Sandyford Sexual Health Services, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Rory N Gunson
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| |
Collapse
|
2
|
Rubin DH, Mortimer TD, Grad YH. Neisseria gonorrhoeae diagnostic escape from a gyrA-based test for ciprofloxacin susceptibility and the effect on zoliflodacin resistance: a bacterial genetics and experimental evolution study. THE LANCET. MICROBE 2023; 4:e247-e254. [PMID: 36868257 PMCID: PMC10071290 DOI: 10.1016/s2666-5247(22)00356-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND The aetiological bacterial agent of gonorrhoea, Neisseria gonorrhoeae, has become resistant to each of the first-line antibiotics used to treat it, including ciprofloxacin. One diagnostic approach to identify ciprofloxacin-susceptible isolates is to determine codon 91 in the gene encoding the A subunit of DNA gyrase, gyrA, where coding for the wild-type serine (gyrA91S) is associated with ciprofloxacin susceptibility and phenylalanine (gyrA91F) with resistance. The aim of this study was to investigate the possibility of diagnostic escape from gyrA susceptibility testing. METHODS We used bacterial genetics to introduce pairwise substitutions in GyrA positions 91 (S or F) and 95 (D, G, or N), which is a second site in GyrA associated with ciprofloxacin resistance, into five clinical isolates of N gonorrhoeae. All five isolates encoded GyrA S91F, an additional substitution in GyrA at position 95, substitutions in ParC that are known to cause an increased minimum inhibitory concentration (MIC) to ciprofloxacin, and GyrB 429D, which is associated with susceptibility to zoliflodacin (a spiropyrimidinetrione-class antibiotic in phase 3 trials for treatment of gonorrhoea). We evolved these isolates to assess for the existence of pathways to ciprofloxacin resistance (MIC ≥1 μg/mL) and measured MICs for ciprofloxacin and zoliflodacin. In parallel, we searched metagenomic data for 11 355 N gonorrhoeae clinical isolates with reported ciprofloxacin MICs that were publicly available from the European Nucleotide Archive for strains that would be identified as susceptible by gyrA codon 91-based assays. FINDINGS Three clinical isolates of N gonorrhoeae with substitutions in GyrA position 95 associated with resistance (G or N) maintained intermediate ciprofloxacin MICs (0·125-0·5 μg/mL), which has been associated with treatment failure, despite reversion of GyrA position 91 from phenylalanine to serine. From an in-silico analysis of the 11 355 genomes from N gonorrhoeae clinical isolates, we identified 30 isolates with gyrA codon 91 encoding a serine and a ciprofloxacin resistance-associated mutation at codon 95. The reported MICs for these isolates varied from 0·023 μg/mL to 0·25 μg/mL, including four with intermediate ciprofloxacin MICs (associated with substantially increased risk of treatment failure). Finally, through experimental evolution, one clinical isolate of N gonorrhoeae bearing GyrA 91S acquired ciprofloxacin resistance through mutations in the gene encoding for the B subunit of DNA gyrase (gyrB) that also conferred reduced susceptibility to zoliflodacin (ie, MIC ≥2 μg/mL). INTERPRETATION Diagnostic escape from gyrA codon 91 diagnostics could occur through either reversion of the gyrA allele or expansion of circulating lineages. N gonorrhoeae genomic surveillance efforts might benefit from including gyrB, given its potential for contributing to ciprofloxacin and zoliflodacin resistance, and diagnostic strategies that reduce the likelihood of escape, such as the incorporation of multiple target sites, should be investigated. Diagnostics that guide antibiotic therapy can have unintended consequences, including novel resistance determinants and antibiotic cross-resistance. FUNDING US National Institutes of Health National Institute of Allergy and Infectious Diseases, National Institute of General Medical Sciences, and the Smith Family Foundation.
Collapse
Affiliation(s)
- Daniel Hf Rubin
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Mitchev N, Singh R, Ramsuran V, Ismail A, Allam M, Kwenda S, Mnyameni F, Garrett N, Swe-Han KS, Niehaus AJ, Mlisana KP. High-Resolution Melting Analysis to Detect Antimicrobial Resistance Determinants in South African Neisseria gonorrhoeae Clinical Isolates and Specimens. Int J Microbiol 2022; 2022:9094328. [PMID: 35087590 PMCID: PMC8789472 DOI: 10.1155/2022/9094328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Antimicrobial resistance is limiting treatment options for Neisseria gonorrhoeae infections. To aid or replace culture and the syndromic management approach, molecular assays are required for antimicrobial susceptibility testing to guide appropriate and rapid treatment. OBJECTIVE We aimed to detect single-nucleotide polymorphisms and plasmids associated with antimicrobial resistance from N. gonorrhoeae isolates from a clinic population in South Africa, using real-time PCR as a rapid test for AMR detection. METHODS N. gonorrhoeae isolates, from female and male patients presenting for care at a sexually transmitted infections clinic in Durban, South Africa, were analysed using phenotypic and genotypic methods for identification and antibiotic susceptibility testing (AST). Real-time PCR and high-resolution melting analysis were used to detect porA pseudogene (species-specific marker) and resistance-associated targets. Whole-genome sequencing was used as the gold standard for the presence of point mutations. RESULTS The real-time porA pseudogene assay identified all N. gonorrhoeae-positive isolates and specimens. Concordance between molecular detection (real-time PCR and HRM) and resistance phenotype was ≥92% for bla TEM (HLR penicillin), rpsJ_V57M (tetracycline), tetM (tetracycline), and gyrA_S91F (ciprofloxacin). Resistance determinants 16SrRNA_C1192U (spectinomycin), mtrR_G45D (azithromycin), and penA_D545S, penA_mosaic (cefixime/ceftriaxone) correlated with the WHO control isolates. CONCLUSIONS Eight resistance-associated targets correlated with phenotypic culture results. The porA pseudogene reliably detected N. gonorrhoeae. Larger cohorts are required to validate the utility of these targets as a convenient culture-free diagnostic tool, to guide STI management in a South African population.
Collapse
Affiliation(s)
- Nireshni Mitchev
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
| | - Ravesh Singh
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Florah Mnyameni
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Nursing and Public Health, UKZN, Durban, South Africa
| | - Khine Swe Swe-Han
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Abraham J. Niehaus
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
| | - Koleka P. Mlisana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
5
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Lee DYJ, Ashcroft MM, Chow EPF, Sait M, De Petra V, Tschaepe M, Lange S, Taiaroa G, Bradshaw CS, Whiley DM, Fairley CK, Howden BP, Chen MY, Pasricha S, Williamson DA. Reflex Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae by Use of the SpeeDx ResistancePlus GC Assay. J Clin Microbiol 2021; 59:e00089-21. [PMID: 33658263 PMCID: PMC8091848 DOI: 10.1128/jcm.00089-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Resistance-guided therapy (RGT) for gonorrhea may reduce unnecessary use of broad-spectrum antibiotics. When reflexed from the Aptima Combo 2 assay, the ResistancePlus GC assay demonstrated 94.8% sensitivity and 100.0% specificity for Neisseria gonorrhoeae detection. Of the 379 concordant N. gonorrhoeae-positive samples, 86.8% were found to possess the gyrA S91F mutation, which was highly predictive for ciprofloxacin resistance and stable across 3,144 publicly available N. gonorrhoeae genomes. Our work supports the feasibility of implementing RGT for gonorrhea into routine molecular workflows.
Collapse
Affiliation(s)
- Darren Y J Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melinda M Ashcroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric P F Chow
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle Sait
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vesna De Petra
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marlene Tschaepe
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sigrid Lange
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catriona S Bradshaw
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David M Whiley
- The University of Queensland Centre for Clinical Research (UQ-CCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher K Fairley
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marcus Y Chen
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Shivani Pasricha
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|