1
|
Popova L, Carabetta VJ. The Use of Next-Generation Sequencing in Personalized Medicine. Methods Mol Biol 2025; 2866:287-315. [PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Ye X, Fan L, Zhang L, Wang D, Ma Y, Kong J, Fang W, Hu J, Wang X. Rapid and simultaneous detection of common childhood diarrhea viruses by microfluidic-FEN1-assisted isothermal amplification with ultra-high specificity and sensitivity. Biosens Bioelectron 2024; 264:116677. [PMID: 39159587 DOI: 10.1016/j.bios.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Rapid and accurate diagnostic methods are crucial for managing viral gastroenteritis in children, a leading cause of global childhood morbidity and mortality. This study introduces a novel microfluidic-Flap endonuclease 1 (FEN1)-assisted isothermal amplification (MFIA) method for simultaneously detecting major viral pathogens associated with childhood diarrhea-rotavirus, norovirus, and adenovirus. Leveraging the specificity-enhancing properties of FEN1 with a universal dspacer-modified flap probe and the adaptability of microfluidic technology, MFIA demonstrated an exceptional detection limit (5 copies/μL) and specificity in the simultaneous detection of common diarrhea pathogens in clinical samples. Our approach addresses the limitations of current diagnostic techniques by offering a rapid (turn around time <1 h), cost-effective, easy design steps (universal flap design), and excellent detection performance method suitable for multiple applications. The validation of MFIA against the gold-standard PCR method using 150 actual clinical samples showed no statistical difference in the detection performance of the two methods, positioning it as a potential detection tool in pediatric diagnostic virology and public health surveillance. In conclusion, the MFIA method promises to transform pediatric infectious disease diagnostics and contribute significantly to global health efforts combating viral gastroenteritis.
Collapse
Affiliation(s)
- Xin Ye
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Linlin Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Lei Zhang
- Department of Dermatology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Dan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yanfen Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Wenjie Fang
- Department of Dermatology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Jian Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xiaoqin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Hasan H, Nasirudeen NA, Ruzlan MAF, Mohd Jamil MA, Ismail NAS, Wahab AA, Ali A. Acute Infectious Gastroenteritis: The Causative Agents, Omics-Based Detection of Antigens and Novel Biomarkers. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1112. [PMID: 34943308 PMCID: PMC8700514 DOI: 10.3390/children8121112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
Acute infectious gastroenteritis (AGE) is among the leading causes of mortality in children less than 5 years of age worldwide. There are many causative agents that lead to this infection, with rotavirus being the commonest pathogen in the past decade. However, this trend is now being progressively replaced by another agent, which is the norovirus. Apart from the viruses, bacteria such as Salmonella and Escherichia coli and parasites such as Entamoeba histolytica also contribute to AGE. These agents can be recognised by their respective biological markers, which are mainly the specific antigens or genes to determine the causative pathogen. In conjunction to that, omics technologies are currently providing crucial insights into the diagnosis of acute infectious gastroenteritis at the molecular level. Recent advancement in omics technologies could be an important tool to further elucidate the potential causative agents for AGE. This review will explore the current available biomarkers and antigens available for the diagnosis and management of the different causative agents of AGE. Despite the high-priced multi-omics approaches, the idea for utilization of these technologies is to allow more robust discovery of novel antigens and biomarkers related to management AGE, which eventually can be developed using easier and cheaper detection methods for future clinical setting. Thus, prediction of prognosis, virulence and drug susceptibility for active infections can be obtained. Case management, risk prediction for hospital-acquired infections, outbreak detection, and antimicrobial accountability are aimed for further improvement by integrating these capabilities into a new clinical workflow.
Collapse
Affiliation(s)
- Haziqah Hasan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Nor Ashika Nasirudeen
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Alif Farhan Ruzlan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Aiman Mohd Jamil
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Asrul Abdul Wahab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| |
Collapse
|