1
|
Hong Y, Huang Y, Yang X, Zhang J, Li L, Huang Q, Huang Z. Abamectin at environmentally-realistic concentrations cause oxidative stress and genotoxic damage in juvenile fish (Schizothorax prenanti). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105528. [PMID: 32569996 DOI: 10.1016/j.aquatox.2020.105528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 05/22/2023]
Abstract
Abamectin (ABM) has been extensively used in Chinese aquaculture systems for parasite control, but no information is available regarding its effects on the important freshwater commercial fish species Schizothorax prenanti. We performed an acute toxicity test to determine the effects of ABM on S. prenanti, and the 48- and 96-h median lethal concentration values were 33.32 and 15.98 μg/L, respectively. In a second test, animals were exposed to sublethal concentrations of ABM (0.5, 2 or 8 μg/L) for 8 days, and various cytological and biochemical parameters were measured. ABM caused DNA damage in hepatocytes, with significant increases in Olive Tail Moment values and 8-hydroxy-2'-deoxyguanosine levels. Hepatocytic apoptosis occurred following all treatments, and was accompanied by an increase in reactive oxygen species (ROS) generation and caspase activity in a dose- and time-dependent manner. In addition, there were significant decreases in glutathione peroxidase levels and superoxide dismutase and catalase activity and increases in malonaldehyde levels. ABM-induced hepatocytic apoptosis in S. prenanti was probably triggered by ROS generation following a cascade reaction of caspases in mitochondrial or death receptor pathways, which caused antioxidant inhibition, oxidative product accumulation, and DNA damage in the liver.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China.
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Jilei Zhang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Lanshi Li
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
2
|
Abstract
For a long time, many types of vaccines have been useful for the prophylaxis of many infectious diseases. Thus far, many adjuvants that enhance the effects of vaccines have been explored. However, very few adjuvants are being used for humans worldwide. In this study, we investigated the adjuvant activity of various substances, and found citrulline to have high potential as an adjuvant. Citrulline is a type of amino acid present in the body of many organisms. A number of biological activities of citrulline have been reported; however, no adjuvant activity has been reported thus far. Aluminum salts, which are commonly used as adjuvants are not water soluble; therefore, some difficulties are encountered while using them as vaccine adjuvants. Citrulline is easy to use because of its water solubility. In this study, we showed for the first time the adjuvant activity of citrulline by using viral antigens and amyloid β peptide. Water-soluble citrulline, which is present in our body, is a potential adjuvant candidate.
Collapse
Affiliation(s)
| | - Junichi Matsuda
- Development Department, Kikuchi Research Center, KM Biologics Co., Ltd
| | - Chikateru Nozaki
- Department of Medical Technology, Kumamoto Health Science University
| |
Collapse
|
3
|
Cooperation of erythrocytes with leukocytes in immune response of a teleost Oplegnathus fasciatus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Li H, Zhou X, Wu M, Deng M, Wang C, Hou J, Mou P. The cytotoxicity and protective effects of Astragalus membranaceus extracts and butylated hydroxyanisole on hydroxyl radical-induced apoptosis in fish erythrocytes. ACTA ACUST UNITED AC 2016; 2:376-382. [PMID: 29767041 PMCID: PMC5941053 DOI: 10.1016/j.aninu.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Erythrocytes play an essential role in transporting O2 and CO2 for respiration in fish. However, erythrocytes continuously suffer from reactive oxygen species (ROS) -induced oxidative stress and apoptosis. Thus, it is essential to expand our knowledge of how to protect erythrocytes against ROS-induced oxidative stress and apoptosis in fish. In this study, we explored the cytotoxicity and the effects of butylated hydroxyanisole (BHA), ethyl ether extracts, ethyl acetate extracts, acetone extracts (AE), ethanol extracts, and aqueous extracts of Astragalus membranaceus (EAm) on hydroxyl radical (•OH)-induced apoptosis in carp erythrocytes. The rat hepatocytes and carp erythrocytes were incubated with different concentrations of BHA or EAm(0.125 to 1 mg/mL). The toxicity in rat hepatocytes and carp erythrocytes was then measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and a haemolysis assay, respectively. The carp erythrocytes were treated with BHA or EAm in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37 °C, except for the control group. Oxidative stress and apoptosis parameters in the carp erythrocytes were then evaluated using the commercial kit. The results indicated that at high concentrations, BHA and EAm could induce toxicity in rat hepatocytes and fish erythrocytes. However, BHA was more toxic than EAm at the same concentrations. Moreover, the toxicity order of BHA and EAm in the fish erythrocytes approximately agreed with that for the rat hepatocytes. Butylated hydroxyanisole and EAm suppressed the •OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis) by decreasing the generation of ROS, inhibiting the oxidation of cellular components, and restoring the activities of antioxidants in carp erythrocytes. Of all of the examined EAm, the AE showed the strongest effects. The effects of AE on superoxide anion, H2O2, met-haemoglobin and reduced glutathione levels, as well as glutathione reductase activity and apoptosis were equivalent to or stronger than those of BHA. These results revealed that the AE of Astragalus membranaceus could be used as a potential natural antioxidant or apoptosis inhibitor in fish erythrocytes.
Collapse
Affiliation(s)
- Huatao Li
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Wu
- Archives, Neijiang Normal University, Neijiang 641000, China
| | - Mengling Deng
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Chao Wang
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Jingjing Hou
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Pengju Mou
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| |
Collapse
|