1
|
Ramírez CC, Alméciga-Díaz CJ, Martín-Rufián M, Cárdenas-García C, Espejo-Mojica AJ, Lobo C, Benincore EP. A close-up view of the Hunter syndrome. Biochem Biophys Res Commun 2024; 696:149490. [PMID: 38241811 DOI: 10.1016/j.bbrc.2024.149490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
The Lysosomal Storage disease known as Mucopolysaccharidosis type II, is caused by mutations affecting the iduronate-2-sulfatase required for heparan and dermatan sulfate catabolism. The central nervous system (CNS) is mostly and severely affected by the accumulation of both substrates. The complexity of the CNS damage observed in MPS II patients has been limitedly explored. The use of mass spectrometry (MS)-based proteomics tools to identify protein profiles may yield valuable information about the pathological mechanisms of Hunter syndrome. In this further study, we provide a new comparative proteomic analysis of MPS II models by using a pipeline consisting of the identification of native protein complexes positioned selectively by using a specific antibody, coupled with mass spectrometry analysis, allowing us to identify changes involving in a significant number of new biological functions, including a specific brain antioxidant response, a down-regulated autophagic, the suppression of sulfur catabolic process, a prominent liver immune response and the stimulation of phagocytosis among others.
Collapse
Affiliation(s)
- Carolina Cardona Ramírez
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada GIBGA, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá, Colombia.
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | | | | | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Eliana Patricia Benincore
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
2
|
Tuzimski T, Petruczynik A. Review of New Trends in the Analysis of Allergenic Residues in Foods and Cosmetic Products. J AOAC Int 2020; 103:997-1028. [PMID: 33241349 PMCID: PMC8370415 DOI: 10.1093/jaoacint/qsaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergies represent an important health problem in industrialized countries. Allergen sensitization is an important risk factor for the development of allergic diseases; thus, the identification of an individual's allergen sensitization is essential for the diagnosis and treatment of diseases. OBJECTIVE This review compares different modern methods applied for the analysis of allergens in various matrices (from 2015 to the end of September 2019). CONCLUSIONS Immunological methods are still most frequently used for detection of allergens. These methods are sensitive, but the lack of specificity and cross-reaction of some antibodies can still be a relevant source of errors. DNA-based methods are fast and reliable for determination of protein allergens, but the epitopes of protein allergens with posttranslational modifications and their changes, originated during various processing, cannot be identified through the use of this method. Methods based on application of biosensors are very rapid and easy to use, and can be readily implemented as screening methods to monitor allergens. Recent developments of new high-resolution MS instruments are encouraging and enable development in the analysis of allergens. Fast, very sensitive, reliable, and accurate detection and quantification of allergens in complex samples can be used in the near future. Mass spectrometry coupled with LC, GC, or electrophoretic methods bring additional advances in allergen analysis. The use of LC-MS or LC-MS/MS for the quantitative detection of allergens in various matrices is at present gaining acceptance as a protein-based confirmatory technique over the routinely performed enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Medical University of Lublin, Department of Physical Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| | - Anna Petruczynik
- Medical University of Lublin, Department of Inorganic Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| |
Collapse
|
3
|
Cardona C, Benincore E, Pimentel N, Reyes LH, Patarroyo C, Rodríguez-López A, Martin-Rufian M, Barrera LA, Alméciga-Díaz CJ. Identification of the iduronate-2-sulfatase proteome in wild-type mouse brain. Heliyon 2019; 5:e01667. [PMID: 31193135 PMCID: PMC6517578 DOI: 10.1016/j.heliyon.2019.e01667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
Iduronate-2-sulfatase (IDS) is a lysosomal enzyme involved in the metabolism of the glycosaminoglycans heparan (HS) and dermatan (DS) sulfate. Mutations on IDS gene produce mucopolysaccharidosis II (MPS II), characterized by the lysosomal accumulation of HS and DS, leading to severe damage of the central nervous system (CNS) and other tissues. In this study, we used a neurochemistry and proteomic approaches to identify the brain distribution of IDS and its interacting proteins on wild-type mouse brain. IDS immunoreactivity showed a robust staining throughout the entire brain, suggesting an intracellular reactivity in nerve cells and astrocytes. By using affinity purification and mass spectrometry we identified 187 putative IDS partners-proteins, mainly hydrolases, cytoskeletal proteins, transporters, transferases, oxidoreductases, nucleic acid binding proteins, membrane traffic proteins, chaperons and enzyme modulators, among others. The interactions with some of these proteins were predicted by using bioinformatics tools and confirmed by co-immunoprecipitation analysis and Blue Native PAGE. In addition, we identified cytosolic IDS-complexes containing proteins from predicted highly connected nodes (hubs), with molecular functions including catalytic activity, redox balance, binding, transport, receptor activity and structural molecule activity. The proteins identified in this study would provide new insights about IDS physiological role into the CNS and its potential role in the brain-specific protein networks.
Collapse
Affiliation(s)
- Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Benincore
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis H Reyes
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.,Process and Product Design Group (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Camilo Patarroyo
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.,Chemistry Department, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - M Martin-Rufian
- Central Services Research Support, Proteomics Unit, Universidad de Malaga, Spain
| | - Luis Alejandro Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.,Clínica de Errores Innatos del Metabolismo, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Bhattacharya K, Sircar G, Dasgupta A, Gupta Bhattacharya S. Spectrum of Allergens and Allergen Biology in India. Int Arch Allergy Immunol 2018; 177:219-237. [PMID: 30056449 DOI: 10.1159/000490805] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 11/19/2022] Open
Abstract
The growing prevalence of allergy and asthma in India has become a major health concern with symptoms ranging from mild rhinitis to severe asthma and even life-threatening anaphylaxis. The "allergen repertoire" of this subcontinent is highly diverse due to the varied climate, flora, and food habits. The proper identification, purification, and molecular characterization of allergy-eliciting molecules are essential in order to facilitate an accurate diagnosis and to design immunotherapeutic vaccines. Although several reports on prevalent allergens are available, most of these studies were based on preliminary detection and identification of the allergens. Only a few of these allergen molecules have been characterized by recombinant technology and structural biology. The present review first describes the composition, distribution pattern, and natural sources of the predominant allergens in India along with the prevalence of sensitization to these allergens across the country. We go on to present a comprehensive report on the biochemical, immunological, and molecular information on the allergens reported so far from India. The review also covers the studies on allergy- related biosafety assessment of transgenic plants. Finally, we discuss the allergen-specific immunotherapy trials performed in India.
Collapse
Affiliation(s)
| | - Gaurab Sircar
- Division of Plant Biology, Bose Institute, Kolkata, India
| | - Angira Dasgupta
- Department of Chest Medicine, B.R. Singh Hospital and Centre for Medical Education and Research, Kolkata, India
| | | |
Collapse
|
5
|
Sarkar MB, Sircar G, Ghosh N, Das AK, Jana K, Dasgupta A, Bhattacharya SG. Cari p 1, a Novel Polygalacturonase Allergen From Papaya Acting as Respiratory and Food Sensitizer. FRONTIERS IN PLANT SCIENCE 2018; 9:823. [PMID: 29967633 PMCID: PMC6016011 DOI: 10.3389/fpls.2018.00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/28/2018] [Indexed: 05/28/2023]
Abstract
Papaya has been reported to elicit IgE-mediated hypersensitivity via pollen inhalation and fruit consumption. Certain papaya sensitive patients with food allergy were found to experience recurrent respiratory distresses even after quitting the consumption of fruits. This observation prompted us to investigate the allergens commonly present in fruits and pollen grains of papaya. A discovery approach consisting of immunoproteomic detection followed by molecular characterization led to the identification of a novel papaya allergen designated as Cari p 1. This allergen was detected as a 56 kDa IgE-reactive protein from pollen as well as fruit proteome through serological analysis. The protein was identified as an endopolygalacturonase by tandem mass spectrometry. Full length Cari p 1 cDNA was isolated from papaya pollen, cloned in expression vector, and purified as recombinant allergen. The recombinant protein was monomeric and displayed pectinolytic activity. Recombinant Cari p 1 reacted with IgE-antibodies of all the papaya sensitized patient sera. In addition to IgE-reactivity, rCari p 1 displayed allergenic activity by stimulating histamine release from IgE-sensitized granulocytes. CD-spectroscopy of rCari p 1 revealed the presence of predominantly β-sheet characters. The melting curve of the allergen showed partial refolding from a fully denatured state indicating the possible presence of conformational IgE-epitopes characteristic of inhalant allergens in addition to the linear IgE-epitopes of food allergens. The expression of this allergen in papaya fruits was detected by immunoblot with anti-Cari p 1 rabbit IgG and reconfirmed by PCR. In an in vivo mouse model, rCari p 1 exhibited a comparable level of inflammatory responses in the lung and duodenum tissues explaining the dual role of Cari p 1 allergen in respiratory sensitization via pollen inhalation and sensitization of gut mucosa via fruit consumption. Purified rCari p 1 can be used a marker allergen for component-resolved molecular diagnosis. Further immunological studies on Cari p 1 are warranted to design immunotherapeutic vaccine for the clinical management of papaya allergy.
Collapse
Affiliation(s)
| | - Gaurab Sircar
- Division of Plant Biology, Bose Institute, Kolkata, India
| | - Nandini Ghosh
- Division of Plant Biology, Bose Institute, Kolkata, India
| | | | - Kuladip Jana
- Division of Molecular Medicines, Bose Institute, Kolkata, India
| | - Angira Dasgupta
- Chest Clinic, Department of Internal Medicine, B. R. Singh Hospital and Centre for Medical Education and Research, Kolkata, India
| | | |
Collapse
|