1
|
Koga T, Hirakawa S, Nakagawa S, Ishibashi Y, Kashiwabara M, Miyawaki T. Systematization of a toxicity screening method based on a combination of chemical analysis and the delayed fluorescence algal growth inhibition test for use in emergency environmental surveys. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55447-55461. [PMID: 39230813 DOI: 10.1007/s11356-024-34821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
In recent years, heavy rainfall disasters linked to climate change have become more frequent, raising concerns about the release of chemicals stored in factories. Assessing chemical contamination during such emergencies therefore necessitates the development of a quick and easy method for evaluating hazardous contaminants in combination with toxicity testing. This study proposes a "toxicity screening" method that combines biological response testing and chemical analysis to systematically evaluate hazardous contaminants in emergency situations. The toxicity screening method evaluates the water quality in three steps, including water quality measurements and a delayed fluorescence (DF) assay, metal content measurements and a DF assay, and targeted screening analysis and a DF assay. The efficacy of this method was tested using industrial wastewater from 14 locations. Seven of the samples were non-toxic, while the other seven samples were toxic, displaying no observed effect concentration (NOEC) values ranging from 0.625 to 20%. Two toxic samples in the first phase possessed high total chlorine concentrations (0.4 mg L-1) and conductivities (2200 mS m-1), indicating that the main sources of toxicity were residual chlorine and a high salt concentration. In the second phase, metal content analysis identified metals as the toxicity cause in four samples. In the third phase, the organic contaminants were analyzed, and tri-n-octyl phosphate (TNOP) was detected at a concentration of 0.00027 mg L-1. The results of solid-phase extraction experiments and exposure tests with TNOP alone indicated that the contribution of TNOP to the toxicity was negligible and that chemicals not adsorbed on the solid-phase extraction cartridges were the cause of toxicity. The proposed method can therefore be considered effective for disaster-related water quality assessment, delivering results within 12 days.
Collapse
Affiliation(s)
- Toyokazu Koga
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan.
| | - Shusaku Hirakawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Shuhei Nakagawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Yuko Ishibashi
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Manabu Kashiwabara
- Fukuoka Research Commercialization Center for Recycling Systems, 2-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takashi Miyawaki
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
2
|
Tremblay LA, Nakajima D, Endo S, Yagishita M, Ludlow H, Mackay A, Champeau O. Risk Assessment of Displaced Sediment by an Extreme Event Cyclone in a Peri-Urban Zone Using Bioassays and Analytical Chemistry. TOXICS 2024; 12:558. [PMID: 39195660 PMCID: PMC11360154 DOI: 10.3390/toxics12080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Hawke's Bay in New Zealand was impacted by Cyclone Gabrielle in 2023, experiencing intense weather conditions and rainfall. Rivers and streams surged beyond their banks, displacing large amounts of sediment. The sewage treatment plant and industries in the Waitangi catchment, south of the city of Napier, were heavily impacted, making them potential sources of contaminants. The aim of this study was to investigate the risk of displaced sediments deposited south of Napier City, using bioassays and chemical analysis methods. Sediment samples were collected across a gradient between the coastline and the Waitangi Stream. The toxicity of chemically extracted or elutriate samples was assessed by Microtox®, mussel embryo-larval development, and aryl hydrocarbon and constitutive androstane receptor yeast two-hybrid assays. Targeted chemical analysis and automated identification and quantification system (AIQS-GC) methods were used to identify contaminants. The elutriates showed low toxicity and the yeast assays showed levels of activity like those previously reported. Chemical methods confirmed historical contamination by DDT and its metabolites DDE and DDD, as well as by plant sterols. Overall, the toxicity and chemicals detected are what would be expected from a typical agricultural soil. The risk posed by the displaced sediment in the Waitangi catchment can be considered low. Combining chemical and bioanalytical methods was an effective approach to investigate the potential risks of post-disaster contamination.
Collapse
Affiliation(s)
- Louis A. Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand;
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
- Manaaki Whenua–Landcare Research, Lincoln 7608, New Zealand
| | - Daisuke Nakajima
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (D.N.); (S.E.)
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (D.N.); (S.E.)
| | - Mayuko Yagishita
- Department of Life and Environmental Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan;
| | - Hannah Ludlow
- Hawke’s Bay Regional Council, 159 Dalton Street, Napier 4110, New Zealand; (H.L.); (A.M.)
- Pattle Delamore Partners, Ground Floor South, Bower House, 18 Bower Street, Napier 4110, New Zealand
| | - Ariana Mackay
- Hawke’s Bay Regional Council, 159 Dalton Street, Napier 4110, New Zealand; (H.L.); (A.M.)
| | | |
Collapse
|
3
|
Omagari R, Yagishita M, Shiraishi F, Nakayama SF, Terasaki M, Tanigawa T, Yamauchi I, Kubo T, Nakajima D. Identification by Liquid Chromatography-Tandem Mass Spectrometry and Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry of the Contributor to the Thyroid Hormone Receptor Agonist Activity in Effluents from Sewage Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13709-13718. [PMID: 36100216 PMCID: PMC9536310 DOI: 10.1021/acs.est.2c02648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
3,3',5-Triiodothyroacetic acid (TRIAC) was identified as a major contributor to the activity of thyroid hormone receptor (TR) agonists in environmental water. TRIAC contributed 60-148% of the TR-agonist activity in effluents from sewage treatment plants (STPs). Meanwhile, the contributions of 3,5,3'-triiodothyronine (T3), 3,3',5,5'-tetraiodothyronine (T4), and analogues were <1%. TRIAC concentrations in the range of 0.30-4.2 ng/L are likely enough to cause disruption of the thyroid system in living aquatic organisms. The origin of TRIAC in the STP effluents was investigated by analyzing both STP influents and effluents. Relatively high concentrations of T3 and T4 (2.5 and 6.3 ng/L, respectively) were found only in the influents. TRIAC was identified only in the effluents. These findings suggested that T3 and T4 in STP influents were potentially converted into TRIAC during activated sludge treatment or by other means. The evaluation of TRIAC at relevant environmental concentrations by in vivo assays and an appropriate treatment to reduce the TR activity in sewage are needed.
Collapse
Affiliation(s)
- Ryo Omagari
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
| | - Mayuko Yagishita
- Department
of Life and Environmental Science, Prefectural
University of Hiroshima, Shobara
City, Hiroshima 727-0023, Japan
| | - Fujio Shiraishi
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
| | - Shoji F. Nakayama
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
| | - Masanori Terasaki
- Graduate
School of Arts and Sciences, Iwate University, Morioka City, Iwate 020-8550, Japan
| | - Tetsuya Tanigawa
- Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku,Kyoto 615-8510, Japan
| | - Ichiro Yamauchi
- Department
of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takuya Kubo
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daisuke Nakajima
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki 305-8506, Japan
- Graduate
School of Pharmaceutical Sciences, Chiba
University, Chiba City, Chiba 260-8675, Japan
| |
Collapse
|
4
|
Omagari R, Yagishita M, Shiraishi F, Kamata R, Terasaki M, Kubo T, Nakajima D. Evaluation of human thyroid hormone receptor-antagonist activity in 691 chemical compounds using a yeast two-hybrid assay with Saccharomyces cerevisiae Y190. Data Brief 2022; 42:108303. [PMID: 35664659 PMCID: PMC9157443 DOI: 10.1016/j.dib.2022.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/24/2022] Open
|
5
|
Omagari R, Miyabara Y, Hashimoto S, Miyawaki T, Toyota M, Kadokami K, Nakajima D. The rapid survey method of chemical contamination in floods caused by Typhoon Hagibis by combining in vitro bioassay and comprehensive analysis. ENVIRONMENT INTERNATIONAL 2022; 159:107017. [PMID: 34875447 DOI: 10.1016/j.envint.2021.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
A novel comprehensive assessment system, consisting of a bioassay and chemical analysis, was developed to quickly evaluate the human health risk posed by toxic chemicals discharged due to natural disasters. To analyze samples quickly, a yeast-two-hybrid assay (Y2H) and GC-MS equipped with an automated identification and quantification system (AIQS-GC) were employed for the bioassay and chemical analysis, respectively. Since the analysis of 1000 substances by AIQS could be finished within two days following the Y2H assay for screening, this method would complete the risk assessment within three days. To confirm the applicability of this method in real environmental samples, we examined it using sediments circulated by Typhoon Hagibis. In one sediment sample, a distinctive response was indicated by the Y2H assay, and relatively high DDT concentration was identified by AIQS-GC in the same sediment. Therefore, using the results obtained from this method, a human health risk assessment of DDT was conducted, which indicated that the risk could be ignored. Additionally, the contamination of PAHs and alkanes was suggested as well. In this study, the pollution risk assessment could be completed within three days. Therefore, to our knowledge, this is the first study to demonstrate an assessment system with a rapid combination method for emergencies. Consequently, it is believed that this type of novel system would be needed in the future due to the increasing number of natural disasters predicted worldwide.
Collapse
Affiliation(s)
- Ryo Omagari
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan.
| | - Yuichi Miyabara
- Faculty of Science, Suwa Hydrobiological Station, Shinshu University, Japan
| | - Shunji Hashimoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan
| | - Takashi Miyawaki
- Faculty of Environmental Engineering, The University of Kitakyushu, Japan
| | - Masashi Toyota
- Faculty of Engineering, Water Environment and Civil Engineering, Shinshu University, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Japan
| | - Daisuke Nakajima
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| |
Collapse
|
6
|
Yagishita M, Kubo T, Otsuka K, Nakayama SF, Nakajima D. Development of a database strategy based on liquid chromatography–quadrupole time‐of‐flight mass spectrometry for the screening of 75 estrogenic chemicals from treated sewage effluent. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Takuya Kubo
- Kyoto University, Katsura Nishikyo‐ku Kyoto Japan
| | - Koji Otsuka
- Kyoto University, Katsura Nishikyo‐ku Kyoto Japan
| | | | - Daisuke Nakajima
- National Institute for Environmental Studies Tsukuba Ibaraki Japan
| |
Collapse
|