1
|
Hou W, Feng J, Sun Y, Chen X, Liu Y, Wei J. Utilizing metabolomics and network analysis to explore the effects of artificial production methods on the chemical composition and activity of agarwood. Front Pharmacol 2024; 15:1357381. [PMID: 38774207 PMCID: PMC11107428 DOI: 10.3389/fphar.2024.1357381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Agarwood is a traditional aromatic southern medicine. It has a long history of being used in traditional Chinese aromatherapy to treat insomnia, anxiety and depression. Due to the scarcity of wild resources, people have planted trees successfully and begun to explore various agarwood-inducing techniques. This study comparative analysis of volatile metabolites in agarwood produced by various inducing techniques and its potential sleep-promoting, anti-anxiety and anti-depressant network pharmacological activities. Methods: A total of 23 batches of two types of agarwood were collected, one of which was produced by artificial techniques, including 6 batches of TongTi (TT) agarwood produced by "Agar-Wit" and 6 batches of HuoLao (HL) agarwood produced by "burning, chisel and drilling", while the other was collected from the wild, including 6 batches of BanTou (BT) agarwood with trunks broken due to natural or man-made factors and 5 batches of ChongLou (CL) agarwood with trunks damaged by moth worms. The study employed metabolomics combined with network analysis to compare the differences in volatile metabolites of agarwood produced by four commonly used inducing techniques, and explored their potential roles and possible action targets in promoting sleep, reducing anxiety, and alleviating depression. Results: A total of 147 volatile metabolites were detected in agarwood samples, mainly including small aromatic hydrocarbons, sesquiterpenes and 2-(2-phenylethyl) chromone and their pyrolysis products. The results showed composition of metabolites was minimally influenced by the agarwood induction method. However, their concentrations exhibited significant variations, with 17 metabolites showing major differences. The two most distinct metabolites were 6-methoxy-2-(2-phenylethyl) chromone and 6,7-dimethoxy-2-(2-phenylethyl) chromone. Among the volatile metabolites, 142 showed promising potential in treating insomnia, anxiety, and depression, implicating various biological and signaling pathways, predominantly ALB and TNF targets. The top three active metabolites identified were 2-(2-phenylethyl) chromone, 1,5-diphenylpent-1-en-3-one, and 6-methoxy-2-[2-(4'-methoxyphenyl) ethyl] chromone, with their relative content in the four types of agarwood being TT>HL>CL>BT. Conclusion: The differences in the content of 2-(2-phenylethyl) chromones suggest that they may be responsible for the varying therapeutic activities observed in different types of agarwood aromatherapy. This study offers theoretical support for the selection of agarwood in aromatherapy practices.
Collapse
Affiliation(s)
- Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiqin Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Sundaraj Y, Abdullah H, Nezhad NG, Rodrigues KF, Sabri S, Baharum SN. Cloning, Expression and Functional Characterization of a Novel α-Humulene Synthase, Responsible for the Formation of Sesquiterpene in Agarwood Originating from Aquilaria malaccensis. Curr Issues Mol Biol 2023; 45:8989-9002. [PMID: 37998741 PMCID: PMC10670791 DOI: 10.3390/cimb45110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and β-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.
Collapse
Affiliation(s)
- Yasotha Sundaraj
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
- Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia;
| | - Hasdianty Abdullah
- Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia;
| | - Nima Ghahremani Nezhad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Sabah, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
3
|
Chemical Composition and Potential Properties in Mental Illness (Anxiety, Depression and Insomnia) of Agarwood Essential Oil: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144528. [PMID: 35889407 PMCID: PMC9319747 DOI: 10.3390/molecules27144528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
As a valuable medicinal herb and spice, agarwood is widely used in the fields of daily chemistry, traditional medicine, religion and literary collection. It mainly contains sesquiterpenes and 2-(2-phenylethyl)chromones, which are often used to soothe the body and mind, relieve anxiety, act as an antidepressant and treat insomnia and other mental disorders, presenting a good calming effect. This paper reviews the chemical composition of the essential oils of different sources of agarwood, as well as the progress of research on the sedative and tranquilizing pharmacological activity and mechanism of action of agarwood essential oil (AEO), and then analyzes the current problems of AEO research and its application prospects in the treatment of mental diseases.
Collapse
|
4
|
Abdul Kadir FA, Azizan KA, Othman R. Transcriptome of Aquilaria malaccensis containing agarwood formed naturally and induced artificially. BMC Res Notes 2021; 14:117. [PMID: 33766087 PMCID: PMC7992328 DOI: 10.1186/s13104-021-05532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Agarwood is the aromatic heartwood formed upon wounding of Aquilaria trees either naturally formed due to physical wound sustained from natural phenomena followed by microbial infection, or artificially induced using different inoculation methods. Different induction methods produce agarwoods with different aromas which have impacts on their commercial values. In lieu of elucidating the molecular mechanisms of agarwood formation under different treatment conditions, the transcriptome profiles of trunk tissues from healthy A. malaccensis tree, and naturally and artificially induced trees were obtained. DATA DESCRIPTION The transcriptome of trunk tissues from healthy A. malaccensis, and naturally and artificially induced trees were sequenced using Illumina HiSeq™ 4000 platform which resulted in a total of 38.4 Gb clean reads with Q30 rate of at least 91%. The transcriptome consists of 85,986 unigenes containing 1305 bases on average which were annotated against several databases. From this, 44,654 unigenes were mapped to 290 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. These transcriptome data represent considerable contribution towards Aquilaria transcriptome data and enhance current knowledge in comprehending the molecular mechanisms underlying agarwood formation in Aquilaria spp.
Collapse
Affiliation(s)
- Farah Adibah Abdul Kadir
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| | - Roohaida Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| |
Collapse
|