1
|
Methylene blue removal from aqueous solutions using a biochar/gellan gum hydrogel composite: Effect of agitation mode on sorption kinetics. Int J Biol Macromol 2023; 232:123355. [PMID: 36682653 DOI: 10.1016/j.ijbiomac.2023.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Hydrogel membranes are prepared by casting a mixture of gellan gum (associated with PVA) and biochar produced from a local Egyptian plant. The mesoporous material is characterized by a specific surface area close to 134 m2 g-1, a residue of 28 % (at 800 °C), and a pHPZC close to 6.43. After grinding, the material is tested for Methylene Blue sorption at pH 10.5: sorption capacity reaches 1.70 mmol MB g-1 (synergistic effect of the precursors). The sorption isotherms are fitted by both Langmuir and Sips eqs. MB sorption increases with temperature: the sorption is endothermic (∆H°: 12.9 kJ mol-1), with positive entropy (∆S°: 125 J mol-1 K-1). Uptake kinetics are controlled by agitation speed (optimum ≈200 rpm) and resistance to intraparticle diffusion. The profiles are strongly affected by the mode of agitation: the equilibrium time (≈180 min) is reduced to 20-30 min under sonication (especially at frequency: 80 kHz). The mode of agitation controls the best fitting equation: pseudo-first order rate agitation for mechanical agitation contrary to pseudo-second order rate under sonication. The sorption of MB is poorly affected by ionic strength (loss <6 % in 45 g L-1 NaCl solution). Desorption (faster than sorption) is completely achieved using 0.7 M HCl solution. At the sixth recycling, the loss in sorption is close to 5 % (≈ decrease in desorption efficiency). The process is successfully applied for the treatment of MB-spiked industrial solution: the color index decreases by >97 % with a sorbent dose close to 1 g L-1; a higher dose is required for maximum reduction of the COD (60 % at 3 g L-1).
Collapse
|
2
|
A self-healing and injectable oxidized quaternized guar gum/carboxymethyl chitosan hydrogel with efficient hemostatic and antibacterial properties for wound dressing. Colloids Surf B Biointerfaces 2021; 209:112207. [PMID: 34800810 DOI: 10.1016/j.colsurfb.2021.112207] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 11/06/2021] [Indexed: 01/04/2023]
Abstract
Multifunctional wound dressings urgently need to be developed to meet the various needs of wound healing. In this work, we first proposed a new method about modifying the guar gum (GG) by performing a quaternization graft reaction and then oxidation. The obtained oxidized quaternized guar gum (OQGG) not only has antibacterial function due to the introduction of quaternary ammonium groups, but also can become one of the components of Schiff base hydrogels due to the presence of aldehyde groups. Therefore, we used it and carboxymethyl chitosan (CMCS) to design a hydrogel with antibacterial, hemostatic, self-repairing and injectable properties. We characterized the structure of OQGG and OQGG@CMCS hydrogels, but also evaluated the performance of the hydrogels. The results showed that GG was successfully modified to OQGG and OQGG@CMCS hydrogel was successfully prepared, and the obtained OQGG@CMCS hydrogel showed excellent antibacterial and hemostatic properties, and exhibited self-healing and injectability. In addition, cytotoxicity tests demonstrated that the OQGG@CMCS hydrogels presented good cytocompatibility. Further, the OQGG@CMCS hydrogel significantly promoted wound healing in an S. aureus-infected rat wound model. Therefore, the hydrogel has the potential to be applied as a wound dressing.
Collapse
|
3
|
Braz EMA, Silva SCCC, Brito CARS, Carvalho FAA, Alves MMM, Barreto HM, Silva DA, Magalhães R, Oliveira AL, Silva-Filho EC. Modified chicha gum by acetylation for antimicrobial and antiparasitic applications: Characterization and biological properties. Int J Biol Macromol 2020; 160:1177-1188. [PMID: 32479951 DOI: 10.1016/j.ijbiomac.2020.05.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023]
Abstract
It was developed a material to act as an antimicrobial and antiparasitic agent through a modification reaction in the gum structure extracted from the plant Sterculia striata. This material was characterized, the oxidant activity was evaluated and the antimicrobial activity against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium and Klebsiella pneumoniae was investigated, in addition to the effect against Leishmania amazonensis, testing its acute toxicity and its cytotoxicity in human cells. Characterization techniques proved the success of chemical modification. The modification led to an increase in antioxidant activity, with excellent antibacterial activity, reaching almost 100% inhibition for P. aeruginosa and S. Typhimurium, and inhibitory effect above 70% against L. amazonensis, with an affinity far superior to the parasite than macrophages. The derivative showed no acute toxicity, it was non-hemolytic, increased cell viability in macrophages and fibroblasts, and stimulated cell proliferation of keratinocytes, thus being a strong candidate to be used as an antimicrobial and antiparasitic agent in biomedical applications.
Collapse
Affiliation(s)
- Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI CEP: 64770-000, Brazil
| | - Carla Adriana Rodrigues Sousa Brito
- Laboratório de Pesquisa em Microbiologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI CEP 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais - NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais - NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Humberto Medeiros Barreto
- Laboratório de Pesquisa em Microbiologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI CEP 64049-550, Brazil
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Edson C Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil.
| |
Collapse
|