1
|
Barbosa CFC, Asunto JC, Koh RBL, Santos DMC, Zhang D, Cao EP, Galvez LC. Genome-Wide SNP and Indel Discovery in Abaca ( Musa textilis Née) and among Other Musa spp. for Abaca Genetic Resources Management. Curr Issues Mol Biol 2023; 45:5776-5797. [PMID: 37504281 PMCID: PMC10377871 DOI: 10.3390/cimb45070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Abaca (Musa textilis Née) is an economically important fiber crop in the Philippines. Its economic potential, however, is hampered by biotic and abiotic stresses, which are exacerbated by insufficient genomic resources for varietal identification vital for crop improvement. To address these gaps, this study aimed to discover genome-wide polymorphisms among abaca cultivars and other Musa species and analyze their potential as genetic marker resources. This was achieved through whole-genome Illumina resequencing of abaca cultivars and variant calling using BCFtools, followed by genetic diversity and phylogenetic analyses. A total of 20,590,381 high-quality single-nucleotide polymorphisms (SNP) and DNA insertions/deletions (InDels) were mined across 16 abaca cultivars. Filtering based on linkage disequilibrium (LD) yielded 130,768 SNPs and 13,620 InDels, accounting for 0.396 ± 0.106 and 0.431 ± 0.111 of gene diversity across these cultivars. LD-pruned polymorphisms across abaca, M. troglodytarum, M. acuminata and M. balbisiana enabled genetic differentiation within abaca and across the four Musa spp. Phylogenetic analysis revealed the registered varieties Abuab and Inosa to accumulate a significant number of mutations, eliciting further studies linking mutations to their advantageous phenotypes. Overall, this study pioneered in producing marker resources in abaca based on genome-wide polymorphisms vital for varietal authentication and comparative genotyping with the more studied Musa spp.
Collapse
Affiliation(s)
- Cris Francis C Barbosa
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Jayson C Asunto
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
| | - Rhosener Bhea L Koh
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Daisy May C Santos
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ernelea P Cao
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Leny C Galvez
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
| |
Collapse
|
2
|
Droc G, Martin G, Guignon V, Summo M, Sempéré G, Durant E, Soriano A, Baurens FC, Cenci A, Breton C, Shah T, Aury JM, Ge XJ, Harrison PH, Yahiaoui N, D’Hont A, Rouard M. The banana genome hub: a community database for genomics in the Musaceae. HORTICULTURE RESEARCH 2022; 9:uhac221. [PMID: 36479579 PMCID: PMC9720444 DOI: 10.1093/hr/uhac221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
The Banana Genome Hub provides centralized access for genome assemblies, annotations, and the extensive related omics resources available for bananas and banana relatives. A series of tools and unique interfaces are implemented to harness the potential of genomics in bananas, leveraging the power of comparative analysis, while recognizing the differences between datasets. Besides effective genomic tools like BLAST and the JBrowse genome browser, additional interfaces enable advanced gene search and gene family analyses including multiple alignments and phylogenies. A synteny viewer enables the comparison of genome structures between chromosome-scale assemblies. Interfaces for differential expression analyses, metabolic pathways and GO enrichment were also added. A catalogue of variants spanning the banana diversity is made available for exploration, filtering, and export to a wide variety of software. Furthermore, we implemented new ways to graphically explore gene presence-absence in pangenomes as well as genome ancestry mosaics for cultivated bananas. Besides, to guide the community in future sequencing efforts, we provide recommendations for nomenclature of locus tags and a curated list of public genomic resources (assemblies, resequencing, high density genotyping) and upcoming resources-planned, ongoing or not yet public. The Banana Genome Hub aims at supporting the banana scientific community for basic, translational, and applied research and can be accessed at https://banana-genome-hub.southgreen.fr.
Collapse
Affiliation(s)
| | - Guillaume Martin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Valentin Guignon
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Marilyne Summo
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Guilhem Sempéré
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
- INTERTRYP, Université de Montpellier, CIRAD, IRD, 34398 Montpellier, France
| | - Eloi Durant
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Syngenta Seeds SAS, Saint-Sauveur, 31790, France
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, 34830, France
| | - Alexandre Soriano
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Alberto Cenci
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Catherine Breton
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Pat Heslop Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Angélique D’Hont
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | | |
Collapse
|
3
|
Galvez LC, Koh RBL, Barbosa CFC, Asunto JC, Catalla JL, Atienza RG, Costales KT, Aquino VM, Zhang D. Sequencing and de Novo Assembly of Abaca ( Musa textilis Née) var. Abuab Genome. Genes (Basel) 2021; 12:genes12081202. [PMID: 34440376 PMCID: PMC8392402 DOI: 10.3390/genes12081202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 01/14/2023] Open
Abstract
Abaca (Musa textilis Née), an indigenous crop to the Philippines, is known to be the source of the strongest natural fiber. Despite its huge economic contributions, research on crop improvement is limited due to the lack of genomic data. In this study, the whole genome of the abaca var. Abuab was sequenced using Illumina Novaseq 6000 and Pacific Biosciences Single-Molecule Real-Time Sequel. The genome size of Abuab was estimated to be 616 Mbp based on total k-mer number and volume peak. Its genome was assembled at 65× depth, mapping 95.28% of the estimated genome size. BUSCO analysis recovered 78.2% complete BUSCO genes. A total of 33,277 gene structures were predicted which is comparable to the number of predicted genes from recently assembled Musa spp. genomes. A total of 330 Mbp repetitive elements were also mined, accounting to 53.6% of the genome length. Here we report the sequencing and genome assembly of the abaca var. Abuab that will facilitate gene discovery for crop improvement and an indispensable source for genetic diversity studies in Musa.
Collapse
Affiliation(s)
- Leny Calano Galvez
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; (C.F.C.B.); (J.C.A.); (J.L.C.); (R.G.A.); (K.T.C.)
- Correspondence:
| | - Rhosener Bhea Lu Koh
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (R.B.L.K.); (V.M.A.)
| | - Cris Francis Cortez Barbosa
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; (C.F.C.B.); (J.C.A.); (J.L.C.); (R.G.A.); (K.T.C.)
| | - Jayson Calundre Asunto
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; (C.F.C.B.); (J.C.A.); (J.L.C.); (R.G.A.); (K.T.C.)
| | - Jose Leonido Catalla
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; (C.F.C.B.); (J.C.A.); (J.L.C.); (R.G.A.); (K.T.C.)
| | - Robert Gomez Atienza
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; (C.F.C.B.); (J.C.A.); (J.L.C.); (R.G.A.); (K.T.C.)
| | - Kennedy Trinidad Costales
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; (C.F.C.B.); (J.C.A.); (J.L.C.); (R.G.A.); (K.T.C.)
| | - Vermando Masinsin Aquino
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (R.B.L.K.); (V.M.A.)
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| |
Collapse
|