1
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Comparative behavioral ecotoxicology of Inland Silverside larvae exposed to pyrethroids across a salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159398. [PMID: 36257430 DOI: 10.1016/j.scitotenv.2022.159398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.
Collapse
Affiliation(s)
- Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Emily I Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Christopher Y Markgraf
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States of America
| | - Amelie Segarra
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA 95819, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| |
Collapse
|
2
|
Xiao J, Shang W, Zhao Z, Jiang J, Chen J, Cai H, He J, Cai Z, Zhao Z. Pharmacodynamic Material Basis and Potential Mechanism Study of Spatholobi Caulis in Reversing Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:3071147. [PMID: 37089711 PMCID: PMC10121353 DOI: 10.1155/2023/3071147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/03/2022] [Indexed: 04/25/2023]
Abstract
Objective To elucidate the mechanism of Spatholobi Caulis (SC) in treating osteoporosis (OP) integrated zebrafish model and bioinformatics. Methods Skeleton staining coupled with image quantification was performed to evaluate the effects of SC on skeleton mineralization area (SSA) and total optical density (TOD). Zebrafish locomotor activity was monitored using the EthoVision XT. Bioactive compounds of SC and their corresponding protein targets were acquired from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Potential therapeutic targets for OP were summarized through retrieving 5 databases, and then, the overlapping genes between SC and OP were acquired. The core genes were selected by CytoHubba. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional analysis of the intersection target genes were carried out by R software. Finally, the molecular docking simulation was manipulated between the ingredients and the hub genes. Results Compared with the model group, SC significantly increased the SSA and TOD at 10 mg/mL and improved the locomotor activity in a dose-dependent manner (p < 0.001). 33 components of SC were associated with 72 OP-related genes including 10 core genes (MAPK1, VEGFA, MMP9, AKT1, AR, IL6, CALM3, TP53, EGFR, and CAT). Advanced Glycation End Product (AGE) Receptor for AGE (RAGE) signaling pathway was screened out as the principal pathway of SC in anti-OP. The bioactive components (Aloe-emodin, Emodin, Formononetin, Licochalcone A, Luteolin, and Lopac-I-3766) have excellent affinity to core genes (MAPK1, VEGFA, MMP9, AKT1, and IL6). Conclusion SC had the hierarchical network characteristics of "multicomponents/multitargets/multifunctions/multipathways" in reversing OP, but AGE-RAGE signaling pathway may be the main regulatory mechanism.
Collapse
Affiliation(s)
- Jianpeng Xiao
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Wei Shang
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhiming Zhao
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jun Jiang
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Hui Cai
- Department of TCM, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jinjin He
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Zhihui Cai
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
3
|
Martins Fernandes Pereira K, Calheiros de Carvalho A, André Moura Veiga T, Melgoza A, Bonne Hernández R, dos Santos Grecco S, Uchiyama Nakamura M, Guo S. The psychoactive effects of Bryophyllum pinnatum (Lam.) Oken leaves in young zebrafish. PLoS One 2022; 17:e0264987. [PMID: 35263358 PMCID: PMC8906576 DOI: 10.1371/journal.pone.0264987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Bryophyllum pinnatum (Lam.) Oken (BP) is a plant that is used worldwide to treat inflammation, infections, anxiety, restlessness, and sleep disorders. While it is known that BP leaves are rich in flavonoids, the extent of the beneficial and toxic effects of its crude extracts remains unclear. Although some neurobehavioral studies using leaf extracts have been conducted, none has examined the effects of water-extracted leaf samples. The zebrafish is a powerful animal model used to gain insights into the efficacy and toxicity profiles of this plant due to its high fecundity, external development, and ease of performing behavioral assays. In this study, we performed behavioral testing after acute exposure to different concentrations of aqueous extract from leaves of B. pinnatum (LABP) on larval zebrafish, investigating light/dark preference, thigmotaxis, and locomotor activity parameters under both normal and stressed conditions. LABP demonstrated dose-and time-dependent biphasic effects on larval behavior. Acute exposure (25 min) to 500 mg/L LABP resulted in decreased locomotor activity. Exposure to 300 mg/L LABP during the sleep cycle decreased dark avoidance and thigmotaxis while increasing swimming velocity. After sleep deprivation, the group treated with 100 mg/L LABP showed decreased dark avoidance and increased velocity. After a heating stressor, the 30 mg/L and 300 mg/L LABP-treated groups showed decreased dark avoidance. These results suggest both anxiolytic and psychoactive effects of LABP in a dose-dependent manner in a larval zebrafish model. These findings provide a better understanding of the mechanisms underlying relevant behavioral effects, consequently supporting the safe and effective use of LABP for the treatment of mood disorders.
Collapse
Affiliation(s)
- Kassia Martins Fernandes Pereira
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| | | | | | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California, United States of America
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology–LABITA, Department of Chemistry, Universidade Federal de São Paulo. Diadema. SP. Brazil
| | | | | | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
4
|
Continuous light (relative to a 12:12 photoperiod) has no effect on anxiety-like behaviour, boldness, and locomotion in coho salmon (Oncorhynchus kisutch) post-smolts in recirculating aquaculture systems at a salinity of either 2.5 or 10 ppt. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111070. [PMID: 34509593 DOI: 10.1016/j.cbpa.2021.111070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022]
Abstract
There is increased interest in rearing salmon in Recirculating Aquaculture Systems (RAS), where environmental conditions can be tightly controlled to optimize growth. Photoperiod and salinity are two important parameters that can be manipulated in RAS. A longer photoperiod permits more time for feeding, while intermediate salinities may reduce the energetic costs of ionoregulation, both of which may enhance growth. However, little is known about how rearing at different photoperiods and salinity affect behaviour, an understudied but important research topic for intensive fish rearing. To address this, we examined the behavioural effects of two salinities and two photoperiod regimes in coho salmon (Oncorhynchus kisutch) post-smolts reared continuously for 120 days in a RAS. Fish were reared on a photoperiod of either 12 h light:12 h dark (12:12), or 24 h light (24:0) at salinities of 2.5 and 10 ppt. To investigate behavioural differences associated with these treatments, we quantified: i) movement in an open-field test, ii) exploratory behaviour/boldness using a novel object approach test, and iii) anxiety-like behaviour with a light/dark test. The 24:0 groups displayed no differences in boldness/anxiety-like behaviour and locomotion relative to the 12:12 groups at their respective salinities. Taken together, fish reared under continuous light (24:0) show negligible behavioural alterations compared to fish reared under normal light dark conditions (12:12).
Collapse
|