Yao Y, Cai X, Zheng Y, Zhang M, Fei W, Sun D, Zhao M, Ye Y, Zheng C. Short-chain fatty acids regulate B cells differentiation via FFAR2 to alleviate rheumatoid arthritis.
Br J Pharmacol 2022;
179:4315-4329. [PMID:
35393660 DOI:
10.1111/bph.15852]
[Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE
Short-chain fatty acids (SCFAs) are metabolites of gut microbes involved in the host's inflammatory response and immunity. The aim of this study was to investigate the role of SCFAs in RA and the possible mechanisms.
EXPERIMENTAL APPROACH
Gut microbiota diversity in mice was analysed by 16S rDNA sequencing. SCFAs levels were analysed by gas chromatography mass spectrometry. T cells and B cells were analysed by flow cytometry. Bone damage was analysed by micro-CT and x-ray. Histopathological status was analysed by HE staining. The protein in tissues were analysed by immunohistochemistry and PCR. Mice with CD19+ B cells specifically deficient in FFAR2 were used to explore the molecular mechanisms involved.
KEY RESULTS
Levels of acetate, propionate, butyrate, and valerate were decreased in RA patients, and the first three levels correlated positively with the frequency of Bregs in peripheral blood but not with Tregs. Administration of the three SCFAs prior to the onset of collagen-induced arthritis in mice improved arthritic symptoms, increased the Bregs frequency, and decreased transitional B cells and follicular B cells frequency. However, the preceding phenomena could not be observed in mice with CD19+ B cells deficient in FFAR2. The effects of the three SCFAs in RA were dependent on FFAR2 while were independent of the other five B cell receptors (FFAR3, GPR109A, PPARγ, Olfr-78, and AhR).
CONCLUSIONS AND IMPLICATIONS
SCFAs regulate B cells differentiation via FFAR2 to alleviate RA. This will provide new insights into the treatment of RA from an immunological and microbiological perspective.
Collapse