Horoszko CP, Schnatz PJ, Budhathoki-Uprety J, Rao-Pothuraju RV, Koder RL, Heller DA. Non-Covalent Coatings on Carbon Nanotubes Mediate Photosensitizer Interactions.
ACS APPLIED MATERIALS & INTERFACES 2021;
13:51343-51350. [PMID:
34672190 PMCID:
PMC9256527 DOI:
10.1021/acsami.1c14266]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon nanotube-based donor-acceptor devices are used in applications ranging from photovoltaics and sensors to environmental remediation. Non-covalent contacts between donor dyes and nanotubes are often used to optimize sensitization and scalability. However, inconsistency is often observed despite donor dye studies reporting strong donor-acceptor interactions. Here, we demonstrate that the dye binding location is an important factor in this process: we used coated-acceptor chromatic responses and find that dye binding is affected by the coating layer. The emission response to free- and protein-sequestered porphyrin was tested to compare direct and indirect dye contact. An acceptor complex that preferentially red-shifts in response to sequestered porphyrin was identified. We observe inconsistent optical signals that suggest porphyrin-dye interactions are best described as coating-centric; therefore, the coating interface must be considered in application and assay design.
Collapse