1
|
Liang R, Wang Z, Kong X, Xiao X, Chen T, Yang H, Li Y, Zhao X. Differentiation of Human Parthenogenetic Embryonic Stem Cells into Functional Hepatocyte-like Cells. Organogenesis 2020; 16:137-148. [PMID: 33236954 DOI: 10.1080/15476278.2020.1848237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Stem cell and tissue engineering-based therapies for acute liver failure (ALF) have been limited by the lack of an optimal cell source. We aimed to determine the suitability of human parthenogenetic embryonic stem cells (hPESCs) for the development of strategies to treat ALF. We studied the ability of human parthenogenetic embryonic stem cells (hPESCs) with high whole-genome SNP homozygosity, which were obtained by natural activation during in vitro fertilization (IVF), to differentiate into functional hepatocyte-like cells in vitro by monolayer plane orientation. hPESCs were induced on a single-layer flat plate for 21 d in complete medium with the inducers activin A, FGF-4, BMP-2, HGF, OSM, DEX, and B27. Polygonal cell morphology and binuclear cells were observed after 21 d of induction by using an inverted microscope. RT-qPCR results showed that the levels of hepatocyte-specific genes such as AFP, ALB, HNF4a, CYP3A4, SLCO1B3, and ABCC2 significantly increased after induction. Immunocytochemical assay showed CK18 and Hepa expression in the induced cells. Indocyanine green (ICG) staining showed that the cells had the ability to absorb and metabolize dyes. Detection of marker proteins and urea in cell culture supernatants showed that the cells obtained after 21 d of induction had synthetic and secretory functions. The typical ultrastructure of liver cells was observed using TEM after 21 d of induction. The results indicate that naturally activated hPESCs can be induced to differentiate into hepatocellular cells by monolayer planar induction.
Collapse
Affiliation(s)
- Rui Liang
- Department of Pathology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Zhiqiang Wang
- Department of General Surgery, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Xiangyang Kong
- School of Medicine, Kunming University of Science and Technology , Kunming, China
| | - Xiaoxiao Xiao
- Faculty of Chinese medicine, Macau University of Science and Technology , Macao, China
| | - Tianxing Chen
- Department of Pathology, The First People's Hospital of Yunnan Province , Kunming, China
| | - Hui Yang
- Department of Pathology, The First People's Hospital of Yunnan Province , Kunming, China
| | - Ying Li
- Department of Pathology, The First People's Hospital of Yunnan Province , Kunming, China
| | - Xingqi Zhao
- College of Life Sciences, Nanjing Normal University , Nanjing, China
| |
Collapse
|
3
|
Yu Y, Gao Q, Zhao HC, Li R, Gao JM, Ding T, Bao SY, Zhao Y, Sun XF, Fan Y, Qiao J. Ascorbic acid improves pluripotency of human parthenogenetic embryonic stem cells through modifying imprinted gene expression in the Dlk1-Dio3 region. Stem Cell Res Ther 2015; 6:69. [PMID: 25879223 PMCID: PMC4425892 DOI: 10.1186/s13287-015-0054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 10/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Human parthenogenetic embryonic stem cells (hpESCs) are generated from artificially activated oocytes, however, the issue of whether hpESCs have equivalent differentiation ability to human fertilized embryonic stem cells remains controversial. Methods hpESCs were injected into male severe combined immunodeficiency (SCID) mice and the efficiency of teratoma formation was calculated. Then the gene expression and methylation modification were detected by real time-PCR and bisulfate methods. Results Comparison of five hpESCs with different differentiation abilities revealed that levels of paternal genes in the Dlk1-Dio3 region on chromosome 14 in the hpESCs with high differentiation potential are enhanced, but strictly methylated and silenced in the hpESCs with lower differentiation potential. Treatment with ascorbic acid, rescued their ability to support teratoma formation and altered the expression profiles of paternally expressed genes in hpESCs that could not form teratoma easily. No differences in the expression of other imprinting genes were evident between hpESCs with higher and lower differentiation potential, except for those in the Dlk1-Dio3 region. Conclusions The Dlk1-Dio3 imprinting gene cluster distinguishes the differentiation ability of hpESCs. Moreover, modification by ascorbic acid may facilitate application of hpESCs to clinical settings in the future by enhancing their pluripotency. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0054-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Qian Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Hong-cui Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Rong Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jiang-man Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Ting Ding
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Si-yu Bao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Xiao-fang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
4
|
Pennarossa G, Maffei S, Tettamanti G, Congiu T, deEguileor M, Gandolfi F, Brevini TAL. Intercellular bridges are essential for human parthenogenetic cell survival. Mech Dev 2015; 136:30-9. [PMID: 25700933 DOI: 10.1016/j.mod.2015.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
Parthenogenetic cells, obtained from in vitro activated mammalian oocytes, display multipolar spindles, chromosome malsegregation and a high incidence of aneuploidy, probably due to the lack of paternal contribution. Despite this, parthenogenetic cells do not show high rates of apoptosis and are able to proliferate in a way comparable to their biparental counterpart. We hypothesize that a series of adaptive mechanisms are present in parthenogenetic cells, allowing a continuous proliferation and ordinate cell differentiation both in vitro and in vivo. Here we identify the presence of intercellular bridges that contribute to the establishment of a wide communication network among human parthenogenetic cells, providing a mutual exchange of missing products. Silencing of two molecules essential for intercellular bridge formation and maintenance demonstrates the key function played by these cytoplasmic passageways that ensure normal cell functions and survival, alleviating the unbalance in cellular component composition.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Sara Maffei
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Science, Università degli Studi dell'Insubria, Varese, Italy
| | - Magda deEguileor
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
van der Meulen T, Huising MO. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev Diabet Stud 2014; 11:115-32. [PMID: 25148370 DOI: 10.1900/rds.2014.11.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts.
Collapse
Affiliation(s)
- Talitha van der Meulen
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Involvement of histone acetylation of Sox17 and Foxa2 promoters during mouse definitive endoderm differentiation revealed by microRNA profiling. PLoS One 2011; 6:e27965. [PMID: 22132182 PMCID: PMC3223193 DOI: 10.1371/journal.pone.0027965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
Generation of hepatocyte from embryonic stem cells (ESCs) holds great promise for hepatocyte replacement therapy to treat liver diseases. Achieving high efficiency of directed differentiation of ESCs to hepatocyte is of critical importance. Previously, Wnt3a has been reported to promote Activin A-induced human definitive endoderm (DE) differentiation, the early stage of hepatocyte differentiation. However, the underlying molecular mechanisms are not clear. Growing evidence demonstrated that microRNAs (miRNAs) are key regulators involved in various important biological processes including the regulation of stem cell differentiation. In the present study, we profiled genome wide miRNA expression during Wnt3a and Activin A induced mouse DE differentiation. We uncovered distinct miRNA expression patterns during DE differentiation with the identification of a subset of miRNAs whose expression is synergistically regulated by Wnt3a/Activin A treatment at different stages of DE differentiation. Forced expression of a pool of such synergistically regulated miRNAs alone could partially promote DE differentiation, indicating a regulatory role of them. Using TargetScan and GeneGO pathway analyses, the synergistically regulated miRNAs are predicted to regulate key pathways involved in DE differentiation; among them includes the regulation of histone acetylation. Consistently, Wnt3a and Activin A treatment increased global histone acetylation which can be partially mimicked by over expression of the pooled miRNAs. Chromatin IP (ChIP) experiments demonstrated that the promoter regions of Sox17 and Foxa2 are subjected to histone acetylation regulation. Administration of Hdac inhibitors greatly augmented DE differentiation. Our data uncovered a novel epigenetic mechanism of Wnt3a and Activin A induced DE differentiation, whereby the treatment of growth factors induced histone acetylation at least in part by the regulation of miRNA expression.
Collapse
|
8
|
Turovets N, Fair J, West R, Ostrowska A, Semechkin R, Janus J, Cui L, Agapov V, Turovets I, Semechkin A, Csete M, Agapova L. Derivation of high-purity definitive endoderm from human parthenogenetic stem cells using an in vitro analog of the primitive streak. Cell Transplant 2011; 21:217-34. [PMID: 21669044 DOI: 10.3727/096368911x582723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human parthenogenetic stem cells (hpSCs) are pluripotent stem cells with enormous potential as cell sources for cell-based therapies: hpSCs may have histocompatibilty advantages over human embryonic stem cells (hESCs) and derivation of hpSCs does not require viable blastocyst destruction. For translation of all pluripotent stem cell-based therapies, derivation of differentiated cell products that are not contaminated with undifferentiated cells is a major technical roadblock. We report here a novel method to derive high-purity definitive endoderm (DE) from hpSCs, based on reproducing features of the normal human embryonic microenvironment. The method mimics the developmental process of transition through a primitive streak, using a differentiation device that incorporates a three-dimensional extracellular matrix (ECM) combined with a porous membrane. Treatment of undifferentiated hpSCs above the membrane results an epithelial-to-mesenchymal transition (EMT); thus, responsive cells acquire the ability to migrate through the membrane into the ECM, where they differentiate into DE. Importantly, the resultant DE is highly purified, and is not contaminated by undifferentiated cells, as assessed by OCT4 expression using immunocytochemistry and flow cytometry. The functional properties of the DE are also preserved by the process: DE differentiated in the device can generate a highly enriched population of hepatocyte-like cells (HLCs) characterized by expression of hepatic lineage markers, indocyanine green clearance, glycogen storage, cytochrome P450 activity, and engraftment in the liver after transplantation into immunodeficient mice. The method is broadly applicable and we obtained purified DE using hESCs, as well as several hpSC lines. The novel method described here represents a significant step toward the efficient generation of high-purity cells derived from DE, including hepatocytes and pancreatic endocrine cells, for use in regenerative medicine and drug discovery, as well as a platform for studying cell fate specification and behavior during development.
Collapse
|