1
|
Cornification and classical versus nonclassical androgen receptor signaling in mouse penile/preputial development. Differentiation 2021; 121:1-12. [PMID: 34416482 DOI: 10.1016/j.diff.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022]
Abstract
Mouse penile development is androgen-dependent. During development of male and female external genitalia, an internal ectodermal epithelial structure forms called the preputial lamina. At puberty the male preputial lamina canalizes to create the preputial space, effectively splitting into two layers: (a) the epithelial lining of the prepuce and (b) the surface epithelium of the penis. The female preputial lamina does not canalize, and instead remodels into the inverted U-shaped clitoral lamina of the adult female mouse. Androgen-dependent penile development was studied in transgenic mice with pathway-selective AR mutant transgenes through which AR signaling was activated either via the classical (AR-C) or the nonclassical pathway (AR-NC). Penile development and canalization of the preputial lamina was observed in AR-C and wild-type male mice naturally having both AR-C and AR-NC pathways. Conversely, clitoral development occurred in AR null (lacking both AR-C and AR-NC pathways) and AR-NC mice. The process of canalization of the preputial lamina seen in wild-type, AR-C and AR-C/AR-NC male mice involved cornification of the preputial lamina which involved up-regulation of keratin 10 and loricrin. Such up-regulation of these epidermal proteins was absent in the developing and adult clitoral lamina seen in wild-type female mice and AR-NC and AR null male (XY) mice. Thus, signaling through AR-C is sufficient to initiate and promote penile development and canalization of the preputial lamina, a process involving epithelial cornification.
Collapse
|
2
|
Cunha GR, Li Y, Mei C, Derpinghaus A, Baskin LS. Ontogeny of estrogen receptors in human male and female fetal reproductive tracts. Differentiation 2020; 118:107-131. [PMID: 33176961 DOI: 10.1016/j.diff.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
This paper reviews and provides new observations on the ontogeny of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in developing human male and female internal and external genitalia. Included in this study are observations on the human fetal uterine tube, the uterotubal junction, uterus, cervix, vagina, penis and clitoris. We also summarize and report on the ontogeny of estrogen receptors in the human fetal prostate, prostatic urethra and epididymis. The ontogeny of ESR1 and ESR2, which spans from 8 to 21 weeks correlates well with the known "window of susceptibility" (7-15 weeks) for diethylstilbestrol (DES)-induced malformations of the human female reproductive tract as determined through examination of DES daughters exposed in utero to this potent estrogen. Our fairly complete mapping of the ontogeny of ESR1 and ESR2 in developing human male and female internal and external genitalia provides a mechanistic framework for further investigation of the role of estrogen in normal development and of abnormalities elicited by exogenous estrogens.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Cao Mei
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Baskin L, Sinclair A, Derpinghaus A, Cao M, Li Y, Overland M, Aksel S, Cunha GR. Estrogens and development of the mouse and human external genitalia. Differentiation 2020; 118:82-106. [PMID: 33092894 DOI: 10.1016/j.diff.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023]
Abstract
The Jost hypothesis states that androgens are necessary for normal development of the male external genitalia. In this review, we explore the complementary hypothesis that estrogens can elicit abnormal development of male external genitalia. Herein, we review available data in both humans and mice on the deleterious effects of estrogen on external genitalia development, especially during the "window of susceptibility" to exogenous estrogens. The male and female developing external genitalia in both the human and mouse express ESR1 and ESR2, along with the androgen receptor (AR). Human clinical data suggests that exogenous estrogens can adversely affect normal penile and urethral development, resulting in hypospadias. Experimental mouse data also strongly supports the idea that exogenous estrogens cause penile and urethral defects. Despite key differences, estrogen-induced hypospadias in the mouse displays certain morphogenetic homologies to human hypospadias, including disruption of urethral fusion and preputial abnormalities. Timing of estrogenic exposure, or the "window of susceptibility," is an important consideration when examining malformations of the external genitalia in both humans and mice. In addition to a review of normal human and mouse external genital development, this article aims to review the present data on the role of estrogens in normal and abnormal development of the mouse and human internal and external genitalia. Based on the current literature for both species, we conclude that estrogen-dependent processes may play a role in abnormal genital development.
Collapse
Affiliation(s)
- Laurence Baskin
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA.
| | - Adriane Sinclair
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Amber Derpinghaus
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Mei Cao
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Yi Li
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Maya Overland
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Sena Aksel
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Gerald R Cunha
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| |
Collapse
|
4
|
Anatomy of the mouse penis and internal prepuce. Differentiation 2020; 116:26-37. [PMID: 33181401 DOI: 10.1016/j.diff.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023]
Abstract
This paper addresses a confusing issue of preputial anatomy of the mouse. The term "internal prepuce" was used in 2013 to describe a preputial structure integral to the mouse glans penis. Subsequently in 2015 the same term was applied by another group to describe entirely different morphology, generating confusion in the literature. Because it is inappropriate to use the same term to describe entirely different structures, we take this opportunity to provide further descriptive information on the internal prepuce of the mouse employing gross dissection, analysis of serial histologic section sets, three-dimensional reconstruction, scanning electron microscopy and immunohistochemistry. For this purpose, we review and illustrate the relevant literature and provide some additional new data using standard morphological techniques including immunohistochemistry. The mouse internal prepuce is integral to the glans penis and clearly is involved in sexual function in so far as it contains a major erectile body innervated by penile nerves. The development of the mouse internal prepuce is described for the first time and related to the development of the corpus cavernosum glandis.
Collapse
|
5
|
Fan H, Gilbert R, O'Callaghan F, Li L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study. BMJ 2020; 368:m331. [PMID: 32075790 PMCID: PMC7190043 DOI: 10.1136/bmj.m331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the association between macrolide antibiotics prescribing during pregnancy and major malformations, cerebral palsy, epilepsy, attention deficit hyperactivity disorder, and autism spectrum disorder in children. DESIGN Population based cohort study. SETTING The UK Clinical Practice Research Datalink. PARTICIPANTS The study cohort included 104 605 children born from 1990 to 2016 whose mothers were prescribed one macrolide monotherapy (erythromycin, clarithromycin, or azithromycin) or one penicillin monotherapy from the fourth gestational week to delivery. Two negative control cohorts consisted of 82 314 children whose mothers were prescribed macrolides or penicillins before conception, and 53 735 children who were siblings of the children in the study cohort. MAIN OUTCOME MEASURES Risks of any major malformations and system specific major malformations (nervous, cardiovascular, gastrointestinal, genital, and urinary) after macrolide or penicillin prescribing during the first trimester (four to 13 gestational weeks), second to third trimester (14 gestational weeks to birth), or any trimester of pregnancy. Additionally, risks of cerebral palsy, epilepsy, attention deficit hyperactivity disorder, and autism spectrum disorder. RESULTS Major malformations were recorded in 186 of 8632 children (21.55 per 1000) whose mothers were prescribed macrolides and 1666 of 95 973 children (17.36 per 1000) whose mothers were prescribed penicillins during pregnancy. Macrolide prescribing during the first trimester was associated with an increased risk of any major malformation compared with penicillin (27.65 v 17.65 per 1000, adjusted risk ratio 1.55, 95% confidence interval 1.19 to 2.03) and specifically cardiovascular malformations (10.60 v 6.61 per 1000, 1.62, 1.05 to 2.51). Macrolide prescribing in any trimester was associated with an increased risk of genital malformations (4.75 v 3.07 per 1000, 1.58, 1.14 to 2.19, mainly hypospadias). Erythromycin in the first trimester was associated with an increased risk of any major malformation (27.39 v 17.65 per 1000, 1.50, 1.13 to 1.99). No statistically significant associations were found for other system specific malformations or for neurodevelopmental disorders. Findings were robust to sensitivity analyses. CONCLUSIONS Prescribing macrolide antibiotics during the first trimester of pregnancy was associated with an increased risk of any major malformation and specifically cardiovascular malformations compared with penicillin antibiotics. Macrolide prescribing in any trimester was associated with an increased risk of genital malformations. These findings show that macrolides should be used with caution during pregnancy and if feasible alternative antibiotics should be prescribed until further research is available. TRIAL REGISTRATION ClinicalTrials.gov NCT03948620.
Collapse
Affiliation(s)
- Heng Fan
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ruth Gilbert
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Finbar O'Callaghan
- Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Leah Li
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
6
|
Cunha GR, Sinclair A, Cao M, Baskin LS. Development of the human prepuce and its innervation. Differentiation 2020; 111:22-40. [PMID: 31654825 PMCID: PMC6936222 DOI: 10.1016/j.diff.2019.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Abstract
Development of the human prepuce was studied over the course of 9-17 weeks of gestation in 30 specimens. Scanning electron microscopy revealed subtle surface features that were associated with preputial development, namely the appearance of epidermal aggregates that appeared to be associated with formation of the preputial fold. Transverse and sagittal sections revealed that the epidermis of the glans is considerably thicker than that of the penile shaft. We described a novel morphogenetic mechanism of formation of the preputial lamina, namely the splitting of the thick epidermis of the glans into the preputial lamina and the epidermis via the intrusion of mesenchyme containing red blood cells and CD31-positive blood vessels. This process begins at 10-11 weeks of gestation in the proximal aspect of the glans and extends distally. The process is likely to be androgen-dependent and mediated via androgen receptors strategically localized to the morphogenetic process, but signaling through estrogen receptor may play a role. Estrogen receptor alpha (ESR1) has a very limited expression in the developing human glans and prepuce, while estrogen receptor beta (ESR2) is expressed more broadly in the developing preputial lamina, epidermis and urethra. Examination of the ontogeny of innervation of the glans penis and prepuce reveals the presence of the dorsal nerve of the penis as early as 9 weeks of gestation. Nerve fibers enter the glans penis proximally and extend distally over several weeks to eventually reach the distal aspect of the glans and prepuce by 14-16 weeks of gestation.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
7
|
Baskin L, Cao M, Sinclair A, Li Y, Overland M, Isaacson D, Cunha GR. Androgen and estrogen receptor expression in the developing human penis and clitoris. Differentiation 2020; 111:41-59. [PMID: 31655443 PMCID: PMC6926156 DOI: 10.1016/j.diff.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
To better understand how the human fetal penis and clitoris grows and remodels, we undertook an investigation to define active areas of cellular proliferation and programmed cell death spatially and temporally during development of human fetal external genitalia from the indifferent stage (8 weeks) to 18 weeks of gestation. Fifty normal human fetal penile and clitoral specimens were examined using macroscopic imaging, scanning electron microscopy and immunohistochemical localization for the cellular proliferation and apoptotic markers, Ki67 and Caspase-3. A number of hot spots of cellular proliferation characterized by Ki67 localization are present in the penis and clitoris especially early in development, most notably in the corporal body, glans, remodeling glanular urethra, the urethral plate, the roof of the urethral groove and the fully formed penile urethra. The 12-fold increase in penile length over 10 weeks of growth from 8 to 18 weeks of gestation based on Ki67 labelling appears to be driven by cellular proliferation in the corporal body and glans. Throughout all ages in both the developing penis and clitoris Ki67 labeling was consistently elevated in the ventral epidermis and ventral mesenchyme relative to the dorsal counterparts. This finding is consistent with the intense morphogenetic activity/remodeling in the ventral half of the genital tubercle in both sexes involving formation of the urethral/vestibular plates, canalization of the urethral/vestibular plates and fusion of the urethral folds to form the penile urethra. Areas of reduced or absent Ki67 staining include the urethral fold epithelium that fuses to form the penile tubular urethra. In contrast, the urethral fold mesenchyme is positive for Ki67. Apoptosis was rarely noted in the developing penis and clitoris; the only area of minimal Caspase-3 localization was in the epithelium of the ventral epithelial glanular channel remodeling.
Collapse
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Dylan Isaacson
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
8
|
Cunha GR, Liu G, Sinclair A, Cao M, Glickman S, Cooke PS, Baskin L. Androgen-independent events in penile development in humans and animals. Differentiation 2020; 111:98-114. [DOI: 10.1016/j.diff.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|
9
|
Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation 2019; 110:49-63. [PMID: 31622789 PMCID: PMC7339118 DOI: 10.1016/j.diff.2019.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA; George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA; Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA
| | - Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
10
|
Cripps SM, Mattiske DM, Black JR, Risbridger GP, Govers LC, Phillips TR, Pask AJ. A loss of estrogen signaling in the aromatase deficient mouse penis results in mild hypospadias. Differentiation 2019; 109:42-52. [PMID: 31520742 DOI: 10.1016/j.diff.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022]
Abstract
Hypospadias is the abnormal opening of the urethra on the underside of the penis and occurs in approximately 1/125 live male births worldwide. The incidence rate of hypospadias has dramatically increased over the past few decades. This is now attributed, at least in part, to our exposure to endocrine-disrupting chemicals (EDCs) which alter the hormonal signals required for development of the penis. In humans androgens are the main drivers of fusion of the urethral folds to form the urethra within the shaft of the penis, a process required for termination of the urethra in its normal location at the tip of the penis. However, recent research has suggested that estrogen also plays a role in this process. To better understand how EDCs impact urethral development it is essential that we understand the normal function of hormones during development of the penis. To define the role of estrogen in urethral development we examined development of the penis in the aromatase (Cyp19a1) Knockout (ArKO) mouse strain in which endogenous estrogen production is completely ablated. We found that the ArKO penis had a mild hypospadias phenotype. The developing ArKO postnatal penis displayed an early disruption in preputial development, which likely causes the mild hypospadias observed in adults. Using qPCR, we found altered expression of keratin genes and key urethral patterning genes in response to the disrupted estrogen signaling. The hypospadias phenotype was almost identical to that reported for the estrogen receptor α (ERα) knockout confirming that ERα is the predominant receptor for mediating estrogen action during development of the mouse penis. Our results show that estrogen is required for normal prepucial development and placement of the mature urethral opening at the distal aspect of the penis. We also identified several genes which are potential downstream targets of estrogen during normal urethral closure. With this knowledge, we can now better understand how anti-estrogenic as well as estrogenic EDCs disrupt urethral closure to cause mild hypospadias in both mice and humans.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Jay R Black
- School of Earth Sciences, The University of Melbourne, Victoria, Australia
| | - Gail P Risbridger
- Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Luke C Govers
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Govers LC, Phillips TR, Mattiske DM, Rashoo N, Black JR, Sinclair A, Baskin LS, Risbridger GP, Pask AJ. A critical role for estrogen signaling in penis development. FASEB J 2019; 33:10383-10392. [PMID: 31225966 PMCID: PMC6704459 DOI: 10.1096/fj.201802586rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/28/2019] [Indexed: 11/11/2022]
Abstract
Hypospadias, a developmental defect of the penis, is one of the most common congenital malformations in humans. Its incidence has rapidly increased over recent decades, and this has been largely attributed to our increased exposure to endocrine-disrupting chemicals. Penis development is primarily an androgen-driven process; however, estrogen and xenoestrogens are known to affect penis development in both humans and mice. Here, we investigated the role of estrogen in the developing penis. Using a novel penis culture system, we showed that exogenous estrogen directly targets the developing penis in utero to cause hypospadias. In addition, we also uncovered an unexpected endogenous role for estrogen in normal postnatal penis development and showed that a loss of estrogen signaling results in a mild hypospadias phenotype, the most common manifestation of this disease in humans. Our findings demonstrated that both androgen and estrogen signaling are intrinsically required for normal urethral closure. These findings confirmed that penis development is not an entirely androgen-driven process but one in which endogenous estrogen signaling also plays a critical role.-Govers, L. C., Phillips, T. R., Mattiske, D. M., Rashoo, N., Black, J. R., Sinclair, A., Baskin, L. S., Risbridger, G. P., Pask, A. J. A critical role for estrogen signaling in penis development.
Collapse
Affiliation(s)
- Luke C. Govers
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tiffany R. Phillips
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deidre M. Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nineveh Rashoo
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jay R. Black
- School of Earth Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adriane Sinclair
- Division of Pediatric Urology, University of California–San Francisco Benioff Children’s Hospital, San Francisco, California, USA
| | - Laurence S. Baskin
- Division of Pediatric Urology, University of California–San Francisco Benioff Children’s Hospital, San Francisco, California, USA
| | - Gail P. Risbridger
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew J. Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Shen J, Isaacson D, Cao M, Sinclair A, Cunha GR, Baskin L. Immunohistochemical expression analysis of the human fetal lower urogenital tract. Differentiation 2018; 103:100-119. [PMID: 30287094 PMCID: PMC6589035 DOI: 10.1016/j.diff.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
We have studied the ontogeny of the developing human male and female urogenital tracts from 9 weeks (indifferent stage) to 16 weeks (advanced sex differentiation) of gestation by immunohistochemistry on mid-sagittal sections. Sixteen human fetal pelvises were serial sectioned in the sagittal plane and stained with antibodies to epithelial, muscle, nerve, proliferation and hormone receptor markers. Key findings are: (1) The corpus cavernosum in males and females extends into the glans penis and clitoris, respectively, during the ambisexual stage (9 weeks) and thus appears to be an androgen-independent event. (2) The entire human male (and female) urethra is endodermal in origin based on the presence of FOXA1, KRT 7, uroplakin, and the absence of KRT10 staining. The endoderm of the urethra interfaces with ectodermal epidermis at the site of the urethral meatus. (3) The surface epithelium of the verumontanum is endodermal in origin (FOXA1-positive) with a possible contribution of Pax2-positive epithelial cells implying additional input from the Wolffian duct epithelium. (4) Prostatic ducts arise from the endodermal (FOXA1-positive) urogenital sinus epithelium near the verumontanum. (5) Immunohistochemical staining of mid-sagittal and para-sagittal sections revealed the external anal sphincter, levator ani, bulbospongiosus muscle and the anatomic relationships between these developing skeletal muscles and organs of the male and female reproductive tracts. Future studies of normal human developmental anatomy will lay the foundation for understanding congenital anomalies of the lower urogenital tract.
Collapse
Affiliation(s)
- Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Dylan Isaacson
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States.
| |
Collapse
|
13
|
Baskin L, Shen J, Sinclair A, Cao M, Liu X, Liu G, Isaacson D, Overland M, Li Y, Cunha GR. Development of the human penis and clitoris. Differentiation 2018; 103:74-85. [PMID: 30249413 DOI: 10.1016/j.diff.2018.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
The human penis and clitoris develop from the ambisexual genital tubercle. To compare and contrast the development of human penis and clitoris, we used macroscopic photography, optical projection tomography, light sheet microscopy, scanning electron microscopy, histology and immunohistochemistry. The human genital tubercle differentiates into a penis under the influence of androgens forming a tubular urethra that develops by canalization of the urethral plate to form a wide diamond-shaped urethral groove (opening zipper) whose edges (urethral folds) fuse in the midline (closing zipper). In contrast, in females, without the influence of androgens, the vestibular plate (homologue of the urethral plate) undergoes canalization to form a wide vestibular groove whose edges (vestibular folds) remain unfused, ultimately forming the labia minora defining the vaginal vestibule. The neurovascular anatomy is similar in both the developing human penis and clitoris and is the key to successful surgical reconstructions.
Collapse
|
14
|
Liu G, Liu X, Shen J, Sinclair A, Baskin L, Cunha GR. Contrasting mechanisms of penile urethral formation in mouse and human. Differentiation 2018; 101:46-64. [PMID: 29859371 DOI: 10.1016/j.diff.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
This paper addresses the developmental mechanisms of formation of the mouse and human penile urethra and the possibility that two disparate mechanisms are at play. It has been suggested that the entire penile urethra of the mouse forms via direct canalization of the endodermal urethral plate. While this mechanism surely accounts for development of the proximal portion of the mouse penile urethra, we suggest that the distal portion of the mouse penile urethra forms via a series of epithelial fusion events. Through review of the recent literature in combination with new data, it is unlikely that the entire mouse urethra is formed from the endodermal urethral plate due in part to the fact that from E14 onward the urethral plate is not present in the distal aspect of the genital tubercle. Formation of the distal portion of the mouse urethra receives substantial contribution from the preputial swellings that form the preputial-urethral groove and subsequently the preputial-urethral canal, the later of which is subdivided by a fusion event to form the distal portion of the mouse penile urethra. Examination of human penile development also reveals comparable dual morphogenetic mechanisms. However, in the case of human, direct canalization of the urethral plate occurs in the glans, while fusion events are involved in formation of the urethra within the penile shaft, a pattern exactly opposite to that of the mouse. The highest incidence of hypospadias in humans occurs at the junction of these two different developmental mechanisms. The relevance of the mouse as a model of human hypospadias is discussed.
Collapse
Affiliation(s)
- Ge Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Urology, University of California, San Francisco, CA, United States
| | - Xin Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Urology, University of California, San Francisco, CA, United States
| | - Joel Shen
- Department of Urology, University of California, San Francisco, CA, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, CA, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, CA, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, CA, United States.
| |
Collapse
|
15
|
Isaacson D, Shen J, Cao M, Sinclair A, Yue X, Cunha G, Baskin L. Renal Subcapsular xenografing of human fetal external genital tissue - A new model for investigating urethral development. Differentiation 2017; 98:1-13. [PMID: 29031189 DOI: 10.1016/j.diff.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/01/2022]
Abstract
In this paper, we introduce our novel renal subcapsular xenograft model for the study of human penile urethral and clitoral development. We grafted fifteen intact fetal penes and clitorides 8-11 weeks fetal age under the renal capsules of gonadectomized athymic mice. The mice were treated with a subcutaneous pellet of dihydrotestosterone (DHT), diethylstilbestrol (DES) or untreated with hormones. Xenografts were harvested after fourteen days of growth and analyzed via serial histologic sectioning and immunostaining for Ki-67, cytokeratins 6, 7 and 10, uroplakin and the androgen receptor. Non-grafted specimens of similar fetal age were sectioned and immunostained for the same antigenic markers. 14/15 (93.3%) grafts were successfully propagated and harvested. The developing urethral plate, urethral groove, tubular urethra, corporal bodies and preputial lamina were easily identifiable. These structures demonstrated robust cellularity, appropriate architecture and abundant Ki-67 expression. Expression patterns of cytokeratins 6, 7 and 10, uroplakin and the androgen receptor in xenografted specimens demonstrated characteristic male/female differences analogous to non-grafted specimens. DHT treatment reliably produced tubularization of nascent urethral and vestibular structures and male patterns of androgen receptor expression in grafts of both genetic sexes while estrogenic or hormonally absent conditions reliably resulted in a persistent open urethral/vestibular groove and female patterns of androgen receptor expression. This model's success enables further study into causal pathways by which endocrine-disrupting and endocrine-mimicking substances may directly cause disruption of normal human urethral development or hypospadias.
Collapse
Affiliation(s)
- Dylan Isaacson
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Xuan Yue
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Gerald Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| |
Collapse
|
16
|
Al Jishi T, Sergi C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod Toxicol 2017; 71:71-77. [DOI: 10.1016/j.reprotox.2017.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
|
17
|
Flutamide-induced hypospadias in rats: A critical assessment. Differentiation 2017; 94:37-57. [DOI: 10.1016/j.diff.2016.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/03/2023]
|
18
|
Miyado M, Miyado K, Nakamura A, Fukami M, Yamada G, Oda SI. Expression patterns of Fgf8 and Shh in the developing external genitalia of Suncus murinus. Reproduction 2017; 153:187-195. [DOI: 10.1530/rep-16-0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/23/2023]
Abstract
Reciprocal epithelial–mesenchymal interactions and several signalling pathways regulate the development of the genital tubercle (GT), an embryonic primordium of external genitalia. The morphology of the adult male external genitalia of the Asian house musk shrew Suncus murinus (hereafter, laboratory name: suncus) belonging to the order Eulipotyphla (the former order Insectivora or Soricomorpha) differs from those of mice and humans. However, the developmental process of the suncus GT and its regulatory genes are unknown. In the present study, we explored the morphological changes and gene expression patterns during the development of the suncus GT. Morphological observations suggested the presence of common (during the initial outgrowth) and species-specific (during the sexual differentiation of GT) developmental processes of the suncus GT. In gene expression analysis, fibroblast growth factor 8 (Fgf8) and sonic hedgehog (Shh), an indicator and regulator of GT development in mice respectively, were found to be expressed in the cloacal epithelium and the developing urethral epithelium of the suncus GT. This pattern of expression specifically in GT epithelium is similar to that observed in the developing mouse GT. Our results indicate that the mechanism of GT formation regulated by the FGF and SHH signalling pathways is widely conserved in mammals.
Collapse
|
19
|
Shen J, Overland M, Sinclair A, Cao M, Yue X, Cunha G, Baskin L. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra. Differentiation 2016; 92:169-182. [PMID: 27397682 DOI: 10.1016/j.diff.2016.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/20/2016] [Indexed: 11/17/2022]
Abstract
We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube.
Collapse
Affiliation(s)
- Joel Shen
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Maya Overland
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Adriane Sinclair
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Mei Cao
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Xuan Yue
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Gerald Cunha
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Laurence Baskin
- UCSF Benioff Children's Hospital, Division of Pediatric Urology
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| |
Collapse
|
20
|
Sinclair AW, Cao M, Shen J, Cooke P, Risbridger G, Baskin L, Cunha GR. Mouse hypospadias: A critical examination and definition. Differentiation 2016; 92:306-317. [PMID: 27068029 DOI: 10.1016/j.diff.2016.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022]
Abstract
Hypospadias is a common malformation whose etiology is based upon perturbation of normal penile development. The mouse has been previously used as a model of hypospadias, despite an unacceptably wide range of definitions for this malformation. The current paper presents objective criteria and a definition of mouse hypospadias. Accordingly, diethylstilbestrol (DES) induced penile malformations were examined at 60 days postnatal (P60) in mice treated with DES over the age range of 12 days embryonic to 20 days postnatal (E12-P20). DES-induced hypospadias involves malformation of the urethral meatus, which is most severe in DES E12-P10, DES P0-P10 and DES P5-P15 groups, and less so or absent in the other treatment groups. A frenulum-like ventral tether between the penis and the prepuce was seen in the most severely affected DES-treated mice. Internal penile morphology was also altered in the DES E12-P10, DES P0-P10 and DES P5-P15 groups (with little effect in the other DES treatment groups). Thus, adverse effects of DES are a function of the period of DES treatment and most severe in the P0-P10 period. In "estrogen mutant mice" (NERKI, βERKO, αERKO and AROM+) hypospadias was only seen in AROM+ male mice having genetically-engineered elevation is serum estrogen. Significantly, mouse hypospadias was only seen distally at and near the urethral meatus where epithelial fusion events are known to take place and never in the penile midshaft, where urethral formation occurs via an entirely different morphogenetic process.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Mei Cao
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Paul Cooke
- Department of Physiological Sciences, University of Florida, Gainsville, FL 32610, United States
| | - Gail Risbridger
- Monash Institute of Reproduction and Development, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Laurence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States.
| |
Collapse
|
21
|
Investigation of sexual dimorphisms through mouse models and hormone/hormone-disruptor treatments. Differentiation 2016; 91:78-89. [DOI: 10.1016/j.diff.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 01/23/2023]
|
22
|
Sinclair AW, Cao M, Baskin L, Cunha GR. Diethylstilbestrol-induced mouse hypospadias: "window of susceptibility". Differentiation 2016; 91:1-18. [PMID: 26810244 DOI: 10.1016/j.diff.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 11/26/2022]
Abstract
This review presents published and novel results that define the programming window for diethylstilbestrol (DES)-induced abnormal development of the mouse penis. These data indicate that DES has its greatest effect during the period of most intense penile morphogenesis, namely postnatal days 0-15 (P0-P15). Pregnant mice and their neonatal pups were injected subcutaneously with 200 ng/gbw DES every other day from embryonic day 12-18 (DES E12-E18), postnatal day 0-10 (DES P0-P10), embryonic day 12 to postnatal day 10 (DES E12-P10), postnatal day 5-15 (DES P5-P15), and postnatal day 10-20 (DES P10-P20). Aged-matched controls received sesame oil vehicle. After euthanasia at 10, 15, 20 and 60 days, penises were analyzed by gross morphology, histology and morphometry. Penises of all 5 groups of DES-treated mice were reduced in size, which was confirmed by morphometric analysis of internal penile structures. The most profound effects were seen in the DES E12-P10, DES P0-P10, and DES P5-P15 groups, thus defining a DES "programming window". For all parameters, DES treatment from P10 to P20 showed the most mild of effects. Adverse effects of DES on the MUMP cartilage and erectile bodies observed shortly after the last DES injection reverted to normality in the DES P5-P15, but not in the E12-P10 and P0-P10 groups, in which MUMP cartilage and erectile body malformations persisted into adulthood, again emphasizing a "window of susceptibility" in the early neonatal period.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Mei Cao
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Laurence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States.
| |
Collapse
|
23
|
Cunha GR, Sinclair A, Risbridger G, Hutson J, Baskin LS. Current understanding of hypospadias: relevance of animal models. Nat Rev Urol 2015; 12:271-80. [DOI: 10.1038/nrurol.2015.57] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|