1
|
Yin D, Zhang B, Chong Y, Ren W, Xu S, Yang G. Adaptive changes in BMAL2 with increased locomotion associated with the evolution of unihemispheric slow-wave sleep in mammals. Sleep 2024; 47:zsae018. [PMID: 38289699 PMCID: PMC11009019 DOI: 10.1093/sleep/zsae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Marine mammals, especially cetaceans, have evolved a very special form of sleep characterized by unihemispheric slow-wave sleep (USWS) and a negligible amount or complete absence of rapid-eye-movement sleep; however, the underlying genetic mechanisms remain unclear. Here, we detected unique, significant selection signatures in basic helix-loop-helix ARNT like 2 (BMAL2; also called ARNTL2), a key circadian regulator, in marine mammal lineages, and identified two nonsynonymous amino acid substitutions (K204E and K346Q) in the important PER-ARNT-SIM domain of cetacean BMAL2 via sequence comparison with other mammals. In vitro assays revealed that these cetacean-specific mutations specifically enhanced the response to E-box-like enhancer and consequently promoted the transcriptional activation of PER2, which is closely linked to sleep regulation. The increased PER2 expression, which was further confirmed both in vitro and in vivo, is beneficial for allowing cetaceans to maintain continuous movement and alertness during sleep. Concordantly, the locomotor activities of zebrafish overexpressing the cetacean-specific mutant bmal2 were significantly higher than the zebrafish overexpressing the wild-type gene. Subsequently, transcriptome analyses revealed that cetacean-specific mutations caused the upregulation of arousal-related genes and the downregulation of several sleep-promoting genes, which is consistent with the need to maintain hemispheric arousal during USWS. Our findings suggest a potential close relationship between adaptive changes in BMAL2 and the remarkable adaptation of USWS and may provide novel insights into the genetic basis of the evolution of animal sleep.
Collapse
Affiliation(s)
- Daiqing Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Biao Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yujie Chong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Bai Y, Yuan R, Luo Y, Kang Z, Zhu H, Qu L, Lan X, Song X. Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 ( AKAP12) Gene and Their Effects on Growth Traits. Animals (Basel) 2021; 11:ani11072090. [PMID: 34359218 PMCID: PMC8300346 DOI: 10.3390/ani11072090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary AKAP12, the family of A-kinase anchoring proteins (AKAPs), plays an important role in the regulation of growth and development. There have been no corresponding studies of the effect of the AKAP12 gene on growth traits in goats. In our previous study, 7 bp (intron 3) and 13 bp (3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. This study expected to identify the association between these two genetic variations and growth-related traits in 1405 Shaanbei white cashmere (SBWC) goats. The P1–7 bp indel locus was significantly correlated with height at hip cross (HHC; p < 0.05) and the P2–13 bp indel locus was associated with body weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone) circumference in SBWC goats (p < 0.05). These results prove that the AKAP12 gene plays an important role in the growth and development of goats. Abstract The A-kinase anchoring protein 12 gene (AKAP12) is a scaffold protein, which can target multiple signal transduction effectors, can promote mitosis and cytokinesis and plays an important role in the regulation of growth and development. In our previous study, P1–7 bp (intron 3) and P2–13 bp (3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. Therefore, this study aimed to identify the association between these two genetic variations and growth-related traits in Shaanbei white cashmere goats (SBWC) (n = 1405). Herein, we identified two non-linkage insertions/deletions (indels). Notably, we found that the P1–7 bp indel mutation was related to the height at hip cross (HHC; p < 0.05) and the P2–13 bp indel was associated with body weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone) circumference in SBWC goats (p < 0.05). Overall, the two indels’ mutations of AKAP12 affected growth traits in goats. Compared to the P1–7 bp indel, the P2–13 bp indel is more suitable for the breeding of goat growth traits.
Collapse
Affiliation(s)
- Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Rongrong Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
| | - Zihong Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
- Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
- Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
- Correspondence: (X.L.); (X.S.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
- Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China
- Correspondence: (X.L.); (X.S.)
| |
Collapse
|
3
|
Fang HZ, Hu DL, Li Q, Tu S. Risk gene identification and support vector machine learning to construct an early diagnosis model of myocardial infarction. Mol Med Rep 2020; 22:1775-1782. [PMID: 32705275 PMCID: PMC7411293 DOI: 10.3892/mmr.2020.11247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to identify genes associated with increased risk of myocardial infarction (MI) and construct an early diagnosis model based on support vector machine (SVM) learning. The gene expression profile data of GSE34198, containing 97 human blood samples including 49 patients with MI and 48 healthy individuals, were obtained from the Gene Expression Omnibus database. Differentially expressed gene (DEG) screening, DEG enrichment analysis, protein-protein interaction (PPI) network investigation and clustering analysis were performed. The feature genes were identified using the neighboring score algorithm. Furthermore, a recursive feature elimination (RFE) algorithm was employed to screen risk factors among feature genes. The SVM prediction model was constructed and validated using the dataset GSE61144. A total of 1,207 DEGs (724 downregulated, 483 upregulated) between the two groups were identified. PPI analysis investigated 1,083 DEGs and 46,363 edges. In total, 87 genes were selected as candidate genes, and were primarily enriched in functions including ‘G-protein coupled receptor signaling’ or pathways such as ‘focal adhesion’. Furthermore, 15 genes with a high RFE score were selected to construct an SVM prediction model. The model's average accuracy was 86%. Data set verification showed that the predictive precision reached 0.92. High expression of the genes vascular endothelial growth factor A, A-kinase anchoring protein 12 and olfactory receptor 8D2 were potential risk factors for MI. The SVM early diagnosis model constructed by candidate genes could not only predict early MI, but also provide risk probability according to the severity of MI.
Collapse
Affiliation(s)
- Hong-Zhi Fang
- Department of Emergency, The Second Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Dan-Li Hu
- Department of Emergency, The Second Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Qin Li
- Department of Emergency, The Second Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Su Tu
- Department of Emergency, The Second Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
4
|
Kim JG, Kim HH, Bae SJ. Akap12beta supports asymmetric heart development via modulating the Kupffer’s vesicle formation in zebrafish. BMB Rep 2019. [PMID: 31383248 PMCID: PMC6726206 DOI: 10.5483/bmbrep.2019.52.8.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer’s vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of akap12β in asymmetric heart development. The akap12β, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and akap12β-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of akap12β also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous akap12β mRNA not only restored the defective heart laterality but also increased cadherin1 expression in akap12β morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that akap12β regulates heart laterality via cadherin1.
Collapse
Affiliation(s)
- Jeong-gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyun-Ho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Biological and Medical Device Evaluation Team, Korea Testing & Research Institute, Gwacheon 13810, Korea
| | - Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Korean Medicine Research Center for Healthy Aging, Pusan National Univerity, Yangsan 50612, Korea
| |
Collapse
|