1
|
Bayarsaikhan D, Bayarsaikhan G, Kang HA, Lee SB, Han SH, Okano T, Kim K, Lee B. A Study on iPSC-Associated Factors in the Generation of Hepatocytes. Tissue Eng Regen Med 2024; 21:1245-1254. [PMID: 39495460 PMCID: PMC11589077 DOI: 10.1007/s13770-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes. METHODS This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation. RESULTS Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 × 10 cells/cm of seeding density resulting in good morphology and functionality. CONCLUSION This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Govigerel Bayarsaikhan
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hyun A Kang
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Su Bin Lee
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea
| | - So Hee Han
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawa-da-cho, Shinjuku-ku, Tokyo, 1628666, Japan
| | - Kyungsook Kim
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea.
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Bonghee Lee
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
2
|
Kim MK, Park J, Tak S, Paek K, Bang G, Woo SM, Ravichandran NK, Hong WG, Kang HW, Kim H, Bae JY, Kim JA. A long-term storable gel-laden chip composite built in a multi-well plate enabling in situcell encapsulation for high-throughput liver model. Biofabrication 2024; 16:025020. [PMID: 38390723 DOI: 10.1088/1758-5090/ad28ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels are widely used as scaffold materials for constructingin vitrothree-dimensional microphysiological systems. However, their high sensitivity to various external cues hinders the development of hydrogel-laden, microscale, and high-throughput chips. Here, we have developed a long-term storable gel-laden chip composite built in a multi-well plate, which enablesin situcell encapsulation and facilitates high-throughput analysis. Through optimized chemical crosslinking and freeze-drying method (C/FD), we have achieved a high-quality of gel-laden chip composite with excellent transparency, uniform porosity, and appropriate swelling and mechanical characteristics. Besides collagen, decellularized extracellular matrix with tissue-specific biochemical compound has been applied as chip composite. As a ready-to-use platform,in situcell encapsulation within the gel has been achieved through capillary force generated during gel reswelling. The liver-mimetic chip composite, comprising HepG2 cells or primary hepatocytes, has demonstrated favorable hepatic functionality and high sensitivity in drug testing. The developed fabrication process with improved stability of gels and storability allows chip composites to be stored at a wide range of temperatures for up to 28 d without any deformation, demonstrating off-the-shelf products. Consequently, this provides an exceptionally simple and long-term storable platform that can be utilized for an efficient tissue-specific modeling and various biomedical applications.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Jubin Park
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sungho Tak
- Center for Bio-Imaging and Translational Research, Korea Basic Science Institute, Cheongju 28119, Chungbuk, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Chungbuk, Republic of Korea
| | - Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Won Gi Hong
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun 44919, Ulsan, Republic of Korea
| | - Hyang Kim
- Institute of New Horizon Regenerative Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Ji Yong Bae
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Suominen S, Hyypijev T, Venäläinen M, Yrjänäinen A, Vuorenpää H, Lehti-Polojärvi M, Räsänen M, Seppänen A, Hyttinen J, Miettinen S, Aalto-Setälä K, Viiri LE. Improvements in Maturity and Stability of 3D iPSC-Derived Hepatocyte-like Cell Cultures. Cells 2023; 12:2368. [PMID: 37830581 PMCID: PMC10571736 DOI: 10.3390/cells12192368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology enables differentiation of human hepatocytes or hepatocyte-like cells (iPSC-HLCs). Advances in 3D culturing platforms enable the development of more in vivo-like liver models that recapitulate the complex liver architecture and functionality better than traditional 2D monocultures. Moreover, within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation and maintenance of hepatocyte metabolic function. Thus, models combining 3D culture and co-culturing of various cell types potentially create more functional in vitro liver models than 2D monocultures. Here, we report the establishment of 3D cultures of iPSC-HLCs alone and in co-culture with human umbilical vein endothelial cells (HUVECs) and adipose tissue-derived mesenchymal stem/stromal cells (hASCs). The 3D cultures were performed as spheroids or on microfluidic chips utilizing various biomaterials. Our results show that both 3D spheroid and on-chip culture enhance the expression of mature liver marker genes and proteins compared to 2D. Among the spheroid models, we saw the best functionality in iPSC-HLC monoculture spheroids. On the contrary, in the chip system, the multilineage model outperformed the monoculture chip model. Additionally, the optical projection tomography (OPT) and electrical impedance tomography (EIT) system revealed changes in spheroid size and electrical conductivity during spheroid culture, suggesting changes in cell-cell connections. Altogether, the present study demonstrates that iPSC-HLCs can successfully be cultured in 3D as spheroids and on microfluidic chips, and co-culturing iPSC-HLCs with NPCs enhances their functionality. These 3D in vitro liver systems are promising human-derived platforms usable in various liver-related studies, specifically when using patient-specific iPSCs.
Collapse
Affiliation(s)
- Siiri Suominen
- Heart Group, Finnish Cardiovascular Research Center and Science Mimicking Life Research Center, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland (L.E.V.)
| | - Tinja Hyypijev
- Heart Group, Finnish Cardiovascular Research Center and Science Mimicking Life Research Center, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland (L.E.V.)
| | - Mari Venäläinen
- Heart Group, Finnish Cardiovascular Research Center and Science Mimicking Life Research Center, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland (L.E.V.)
| | - Alma Yrjänäinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Mari Lehti-Polojärvi
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Mikko Räsänen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aku Seppänen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Finnish Cardiovascular Research Center and Science Mimicking Life Research Center, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland (L.E.V.)
- Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland
| | - Leena E. Viiri
- Heart Group, Finnish Cardiovascular Research Center and Science Mimicking Life Research Center, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland (L.E.V.)
| |
Collapse
|
4
|
Zhu DH, Zhang YH, Ou-Yang XX, Meng XH, Cao QY, Yu XP, Lu J, Li LJ, Su KK. Expression, Prognostic Value, and Functional Mechanism of Polarity-Related Genes in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:12784. [PMID: 36361574 PMCID: PMC9655479 DOI: 10.3390/ijms232112784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognoses around the world. Within-cell polarity is crucial to cell development and function maintenance, and some studies have found that it is closely related to cancer initiation, metastasis, and prognosis. The aim of our research was to find polarity-related biomarkers which improve the treatment and prognosis of HCC. For the knowledge-driven analysis, 189 polarity-related genes (PRGs) were retrieved and curated manually from the molecular signatures database and reviews. Meanwhile, in the data-driven part, genomic datasets and clinical records of HCC was obtained from the cancer genome atlas database. The potential candidates were considered in the respect to differential expression, mutation rate, and prognostic value. Sixty-one PRGs that passed the knowledge and data-driven screening were applied for function analysis and mechanism deduction. Elastic net model combing least absolute shrinkage and selection operator and ridge regression analysis refined the input into a 12-PRG risk model, and its pharmaceutical potency was evaluated. These findings demonstrated that the integration of multi-omics of PRGs can help us in untangling the liver cancer pathogenesis as well as illustrate the underlying mechanisms and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kun-Kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
5
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
6
|
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022; 10:917166. [PMID: 35774229 PMCID: PMC9237216 DOI: 10.3389/fcell.2022.917166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of neural progenitor cells is impaired and the final neuronal output is altered, severe neurodevelopmental disorders can arise. To effectively study the cell biology of human bRG, genetically accessible human experimental models are needed. With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can now routinely investigate the developing human cerebral cortex in a dish using three-dimensional multicellular structures called organoids. Here, we will review the molecular and cell biological features of bRG that have recently been elucidated using brain organoids. We will further focus on the application of this simple model system to study in a mechanistically actionable way the molecular and cellular events in bRG that can lead to the onset of various neurodevelopmental diseases.
Collapse
|
7
|
Luce E, Steichen C, Allouche M, Messina A, Heslan JM, Lambert T, Weber A, Nguyen TH, Christophe O, Dubart-Kupperschmitt A. In vitro recovery of FIX clotting activity as a marker of highly functional hepatocytes in a hemophilia B iPSC model. Hepatology 2022; 75:866-880. [PMID: 34687060 PMCID: PMC9299628 DOI: 10.1002/hep.32211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Pluripotent stem cell-derived hepatocytes differentiated in monolayer culture are known to have more fetal than adult hepatocyte characteristics. If numerous studies tend to show that this immature phenotype might not necessarily be an obstacle to their use in transplantation, other applications such as drug screening, toxicological studies, or bioartificial livers are reliant on hepatocyte functionality and require full differentiation of hepatocytes. New technologies have been used to improve the differentiation process in recent years, usually evaluated by measuring the albumin production and CYP450 activity. Here we used the complex production and most importantly the activity of the coagulation factor IX (FIX) produced by mature hepatocytes to assess the differentiation of hemophilia B (HB) patient's induced pluripotent stem cells (iPSCs) in both monolayer culture and organoids. APPROACH AND RESULTS Indeed, HB is an X-linked monogenic disease due to an impaired activity of FIX synthesized by hepatocytes in the liver. We have developed an in vitro model of HB hepatocytes using iPSCs generated from fibroblasts of a severe HB patient. We used CRISPR/Cas9 technology to target the genomic insertion of a coagulation factor 9 minigene bearing the Padua mutation to enhance FIX activity. Noncorrected and corrected iPSCs were differentiated into hepatocytes under both two-dimensional and three-dimensional differentiation protocols and deciphered the production of active FIX in vitro. Finally, we assessed the therapeutic efficacy of this approach in vivo using a mouse model of HB. CONCLUSIONS Functional FIX, whose post-translational modifications only occur in fully mature hepatocytes, was only produced in corrected iPSCs differentiated in organoids. Immunohistochemistry analyses of mouse livers indicated a good cell engraftment, and the FIX activity detected in the plasma of transplanted animals confirmed rescue of the bleeding phenotype.
Collapse
Affiliation(s)
- Eléanor Luce
- INSERM Université Paris-SaclayUnité Mixte de Recherche 1193VillejuifFrance.,Féderation Hospitalo-Universitaire Hépatinov, Hôpital Paul BrousseVillejuifFrance
| | - Clara Steichen
- INSERM Université Paris-SaclayUnité Mixte de Recherche 1193VillejuifFrance.,Féderation Hospitalo-Universitaire Hépatinov, Hôpital Paul BrousseVillejuifFrance
| | - Mickaël Allouche
- INSERM Université Paris-SaclayUnité Mixte de Recherche 1193VillejuifFrance.,Féderation Hospitalo-Universitaire Hépatinov, Hôpital Paul BrousseVillejuifFrance
| | - Antonietta Messina
- INSERM Université Paris-SaclayUnité Mixte de Recherche 1193VillejuifFrance.,Féderation Hospitalo-Universitaire Hépatinov, Hôpital Paul BrousseVillejuifFrance
| | | | - Thierry Lambert
- Centre de Référence pour le Traitement des HémophilesHôpital de BicêtreFrance
| | - Anne Weber
- INSERM Université Paris-SaclayUnité Mixte de Recherche 1193VillejuifFrance.,Féderation Hospitalo-Universitaire Hépatinov, Hôpital Paul BrousseVillejuifFrance
| | - Tuan Huy Nguyen
- INSERM Unité Mixte de Recherche 1064CHU Hôtel DieuNantesFrance
| | - Olivier Christophe
- INSERM Unité Mixte de Recherche 1176Hôpital de BicêtreKremlin-BicêtreFrance
| | - Anne Dubart-Kupperschmitt
- INSERM Université Paris-SaclayUnité Mixte de Recherche 1193VillejuifFrance.,Féderation Hospitalo-Universitaire Hépatinov, Hôpital Paul BrousseVillejuifFrance
| |
Collapse
|
8
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
10
|
Tafaleng EN, Malizio MR, Fox IJ, Soto-Gutierrez A. Synthetic human livers for modeling metabolic diseases. Curr Opin Gastroenterol 2021; 37:224-230. [PMID: 33769378 PMCID: PMC8223234 DOI: 10.1097/mog.0000000000000726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In this review, we will explore recent advances in human induced pluripotent stem cell (iPSC)-based modeling of metabolic liver disease and biofabrication of synthetic human liver tissue while also discussing the emerging concept of synthetic biology to generate more physiologically relevant liver disease models. RECENT FINDING iPSC-based platforms have facilitated the study of underlying cellular mechanisms and potential therapeutic strategies for a number of metabolic liver diseases. Concurrently, rapid progress in biofabrication and gene editing technologies have led to the generation of human hepatic tissue that more closely mimic the complexity of the liver. SUMMARY iPSC-based liver tissue is rapidly becoming available for modeling liver physiology due to its ability to recapitulate the complex three-dimensional architecture of the liver and recapitulate interactions between the different cell types and their surroundings. These mini livers have also been used to recapitulate liver disease pathways using the tools of synthetic biology, such as gene editing, to control gene circuits. Further development in this field will undoubtedly bolster future investigations not only in disease modeling and basic research, but also in personalized medicine and autologous transplantation.
Collapse
Affiliation(s)
- Edgar N. Tafaleng
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | - Michelle R. Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | - Ira J. Fox
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Pasqua M, Pereira U, Messina A, de Lartigue C, Vigneron P, Dubart-Kupperschmitt A, Legallais C. HepaRG Self-Assembled Spheroids in Alginate Beads Meet the Clinical Needs for Bioartificial Liver. Tissue Eng Part A 2020; 26:613-622. [PMID: 31914890 DOI: 10.1089/ten.tea.2019.0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In liver tissue engineering, cell culture in spheroids is now well recognized to promote the maintenance of hepatic functions. However, the process leading to spheroids formation is time consuming, costly, and not easy to scale-up for further use in human bioartificial liver (BAL) applications. In this study, we encapsulated HepaRG cells (precursors of hepatocyte-like cells) in 1.5% alginate beads without preforming spheroids. Starting from a given hepatic biomass, we analyzed cell differentiation and metabolic performance for further use in a fluidized-bed BAL. We observed that cells self-rearranged as aggregates within the beads and adequately differentiated over time, in the absence of any differentiating factors classically used. On day 14 postencapsulation, cells displayed a wide range of hepatic features necessary for the treatment of a patient in acute liver failure. These activities include albumin synthesis, ammonia and lactate detoxification, and the efficacy of the enzymes involved in the xenobiotic metabolism (such as CYP1A1/2). Impact statement It has been recognized that culturing cells in spheroids (SPHs) is advantageous as they better reproduce the three-dimensional physiological microenvironment. This approach can be exploited in bioartificial liver applications, where obtaining a functional hepatic biomass is the major challenge. Our study describes an original method for culturing hepatic cells in alginate beads that makes possible the autonomous formation of SPHs after 3 days of culture. In turn, the cells differentiate adequately and display a wide range of hepatic features. They are also capable of treating a pathological plasma model. Finally, this setup can easily be scaled-up to treat acute liver failure.
Collapse
Affiliation(s)
- Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Antonietta Messina
- DHU Hépatinov, Villejuif, France.,UMR_S1193 Inserm/Paris-Saclay University, Villejuif, France
| | - Claire de Lartigue
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Vigneron
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | | | - Cecile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France.,DHU Hépatinov, Villejuif, France
| |
Collapse
|
12
|
Wei CS, Becher N, Blechingberg J, Ott P, Vogel I, Grønbæk H. New tight junction protein 2 variant causing progressive familial intrahepatic cholestasis type 4 in adults: A case report. World J Gastroenterol 2020; 26:550-561. [PMID: 32089630 PMCID: PMC7015721 DOI: 10.3748/wjg.v26.i5.550] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/12/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) encompasses a group of autosomal recessive disorders with high morbidity and mortality. Variants in the gene encoding tight junction protein-2 (TJP2) have been linked to PFIC type 4 (PFIC4), which predominantly presents in childhood. However, there are only limited data from adults with TJP2-related PFIC4. We report a family with an autosomal recessive disorder with a novel variant in the TJP2 gene in adults with very variable expression of PFIC4.
CASE SUMMARY The index patient presented at 19 years old with liver cirrhosis and variceal bleeding and was treated with endoscopic banding and beta-blockers. In 2018, he developed primary liver cancer that was treated with radiofrequency ablation followed by liver transplantation in 2019. Genetic testing revealed a novel homozygous TJP2 variant causing PFIC4 (TJP2([NM_004817.3]:c.[3334C>T]; [3334C>T])). The consanguineous family consists of the father and mother (both heterozygous) and their 12 children, of which five carry the variant in a homozygous state; however, these five siblings have highly variable expression of PFIC4. Two homozygous brothers had cirrhosis and portal hypertension at diagnosis at the ages of 19 and 36. Two other homozygous brothers, age 23 and 19, and the homozygous sister, age 21, have elevated liver enzymes but presently no cirrhosis, which may suggest an age-dependent penetrance. In addition, five sisters had severe and mild intrahepatic cholestasis of pregnancy and carry the TJP2 variant in a homozygous and heterozygous state, respectively.
CONCLUSION This novel TJP2 variant is associated with PFIC4 causing severe liver disease with cirrhosis and primary liver cancer in adolescents/adults.
Collapse
Affiliation(s)
- Chun-Shan Wei
- Department of Clinical Medicine - Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N DK-8200, Denmark
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Naja Becher
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Peter Ott
- Department of Clinical Medicine - Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Henning Grønbæk
- Department of Clinical Medicine - Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| |
Collapse
|
13
|
Corbett JL, Duncan SA. iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery. Front Med (Lausanne) 2019; 6:265. [PMID: 31803747 PMCID: PMC6873655 DOI: 10.3389/fmed.2019.00265] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the largest organs in the body and is responsible for a diverse repertoire of metabolic processes. Such processes include the secretion of serum proteins, carbohydrate and lipid metabolism, bile acid and urea synthesis, detoxification of drugs and metabolic waste products, and vitamin and carbohydrate storage. Currently, liver disease is one of the most prevalent causes of mortality in the USA with congenital liver defects contributing to a significant proportion of these deaths. Historically the study of liver disease has been hampered by a shortage of organ donors, the subsequent scarcity of healthy tissue, and the failure of animal models to fully recapitulate human liver function. In vitro culture of hepatocytes has also proven difficult because primary hepatocytes rapidly de-differentiate in culture. Recent advances in stem cell technology have facilitated the generation of induced pluripotent stem cells (iPSCs) from various somatic cell types from patients. Such cells can be differentiated to a liver cell fate, essentially providing a limitless supply of cells with hepatocyte characteristics that can mimic the pathophysiology of liver disease. Furthermore, development of the CRISPR-Cas9 system, as well as advancement of miniaturized differentiation platforms has facilitated the development of high throughput models for the investigation of hepatocyte differentiation and drug discovery. In this review, we will explore the latest advances in iPSC-based disease modeling and drug screening platforms and examine how this technology is being used to identify new pharmacological interventions, and to advance our understanding of liver development and mechanisms of disease. We will cover how iPSC technology is being used to develop predictive models for rare diseases and how information gained from large in vitro screening experiments can be used to directly inform clinical investigation.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Progenitors of the liver. Differentiation 2019; 110:17-18. [PMID: 31563067 DOI: 10.1016/j.diff.2019.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|