1
|
Vengateswaran HT, Habeeb M, You HW, Aher KB, Bhavar GB, Asane GS. Hepatocellular carcinoma imaging: Exploring traditional techniques and emerging innovations for early intervention. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2024; 24:100327. [DOI: 10.1016/j.medntd.2024.100327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
|
2
|
Barat M, Crombé A, Boeken T, Dacher JN, Si-Mohamed S, Dohan A, Chassagnon G, Lecler A, Greffier J, Nougaret S, Soyer P. Imaging in France: 2024 Update. Can Assoc Radiol J 2024:8465371241288425. [PMID: 39367786 DOI: 10.1177/08465371241288425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024] Open
Abstract
Radiology in France has made major advances in recent years through innovations in research and clinical practice. French institutions have developed innovative imaging techniques and artificial intelligence applications in the field of diagnostic imaging and interventional radiology. These include, but are not limited to, a more precise diagnosis of cancer and other diseases, research in dual-energy and photon-counting computed tomography, new applications of artificial intelligence, and advanced treatments in the field of interventional radiology. This article aims to explore the major research initiatives and technological advances that are shaping the landscape of radiology in France. By highlighting key contributions in diagnostic imaging, artificial intelligence, and interventional radiology, we provide a comprehensive overview of how these innovations are improving patient outcomes, enhancing diagnostic accuracy, and expanding the possibilities for minimally invasive therapies. As the field continues to evolve, France's position at the forefront of radiological research ensures that these innovations will play a central role in addressing current healthcare challenges and improving patient care on a global scale.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Amandine Crombé
- Department of Radiology, Pellegrin University Hospital, Bordeaux, France
- SARCOTARGET Team, Bordeaux Institute of Oncology (BRIC) INSERM U1312, Bordeaux, France
| | - Tom Boeken
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Vascular and Oncological Interventional Radiology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- HEKA INRIA, INSERM PARCC U 970, Paris, France
| | - Jean-Nicolas Dacher
- Cardiac Imaging Unit, Department of Radiology, University Hospital of Rouen, Rouen, France
- UNIROUEN, Inserm U1096, UFR Médecine Pharmacie, Rouen, France
| | - Salim Si-Mohamed
- Department of Radiology, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, France
- CNRS, INSERM, CREATIS UMR 5220, U1206, Villeurbanne, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Guillaume Chassagnon
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Augustin Lecler
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Neuroradiology, Fondation Adolphe de Rothschild Hospital, Paris, France
| | - Joel Greffier
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, Montpellier, France
- PINKCC Lab, IRCM, U1194, Montpellier, France
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
3
|
Guo F, Hu H, Peng H, Liu J, Tang C, Zhang H. Research progress on machine algorithm prediction of liver cancer prognosis after intervention therapy. Am J Cancer Res 2024; 14:4580-4596. [PMID: 39417194 PMCID: PMC11477842 DOI: 10.62347/beao1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment for liver cancer has transitioned from traditional surgical resection to interventional therapies, which have become increasingly popular among patients due to their minimally invasive nature and significant local efficacy. However, with advancements in treatment technologies, accurately assessing patient response and predicting long-term survival has become a crucial research topic. Over the past decade, machine algorithms have made remarkable progress in the medical field, particularly in hepatology and prognosis studies of hepatocellular carcinoma (HCC). Machine algorithms, including deep learning and machine learning, can identify prognostic patterns and trends by analyzing vast amounts of clinical data. Despite significant advancements, several issues remain unresolved in the prognosis prediction of liver cancer using machine algorithms. Key challenges and main controversies include effectively integrating multi-source clinical data to improve prediction accuracy, addressing data privacy and ethical concerns, and enhancing the transparency and interpretability of machine algorithm decision-making processes. This paper aims to systematically review and analyze the current applications and potential of machine algorithms in predicting the prognosis of patients undergoing interventional therapy for liver cancer, providing theoretical and empirical support for future research and clinical practice.
Collapse
Affiliation(s)
- Feng Guo
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Hu
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Hao Peng
- Department of Abdominal Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi 445000, Hubei, China
| | - Jia Liu
- Department of Oncology, The First People’s Hospital of Changde CityChangde 415003, Hunan, China
| | - Chengbo Tang
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Zhang
- Department of Interventional Vascular Surgery, First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital)Changsha 410000, Hunan, China
| |
Collapse
|
4
|
Lesaunier A, Khlaut J, Dancette C, Tselikas L, Bonnet B, Boeken T. Artificial intelligence in interventional radiology: Current concepts and future trends. Diagn Interv Imaging 2024:S2211-5684(24)00177-3. [PMID: 39261225 DOI: 10.1016/j.diii.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
While artificial intelligence (AI) is already well established in diagnostic radiology, it is beginning to make its mark in interventional radiology. AI has the potential to dramatically change the daily practice of interventional radiology at several levels. In the preoperative setting, recent advances in deep learning models, particularly foundation models, enable effective management of multimodality and increased autonomy through their ability to function minimally without supervision. Multimodality is at the heart of patient-tailored management and in interventional radiology, this translates into the development of innovative models for patient selection and outcome prediction. In the perioperative setting, AI is manifesting itself in applications that assist radiologists in image analysis and real-time decision making, thereby improving the efficiency, accuracy, and safety of interventions. In synergy with advances in robotic technologies, AI is laying the groundwork for an increased autonomy. From a research perspective, the development of artificial health data, such as AI-based data augmentation, offers an innovative solution to this central issue and promises to stimulate research in this area. This review aims to provide the medical community with the most important current and future applications of AI in interventional radiology.
Collapse
Affiliation(s)
- Armelle Lesaunier
- Department of Vascular and Oncological Interventional Radiology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France.
| | | | | | - Lambros Tselikas
- Gustave Roussy, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France; Faculté de Médecine, Paris-Saclay University, 94276 Le Kremlin Bicêtre, France
| | - Baptiste Bonnet
- Gustave Roussy, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France; Faculté de Médecine, Paris-Saclay University, 94276 Le Kremlin Bicêtre, France
| | - Tom Boeken
- Department of Vascular and Oncological Interventional Radiology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France; HEKA INRIA, INSERM PARCC U 970, 75015 Paris, France
| |
Collapse
|
5
|
Nardone V, Reginelli A, Rubini D, Gagliardi F, Del Tufo S, Belfiore MP, Boldrini L, Desideri I, Cappabianca S. Delta radiomics: an updated systematic review. LA RADIOLOGIA MEDICA 2024; 129:1197-1214. [PMID: 39017760 PMCID: PMC11322237 DOI: 10.1007/s11547-024-01853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and diverse clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, Pubmed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with 3 key search terms: 'radiomics,' 'texture,' and 'delta.' Studies were analyzed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (5 studies, 10.4%); rectal cancer (6 studies, 12.5%); lung cancer (12 studies, 25%); sarcoma (5 studies, 10.4%); prostate cancer (3 studies, 6.3%), head and neck cancer (6 studies, 12.5%); gastrointestinal malignancies excluding rectum (7 studies, 14.6%) and other disease sites (4 studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology, such asdifferential diagnosis, prognosis and prediction of treatment response, evaluation of side effects. Nevertheless, the studies included in this systematic review suffer from the bias of overall low methodological rigor, so that the conclusions are currently heterogeneous, not robust and hardly replicable. Further research with prospective and multicenter studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Dino Rubini
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Federico Gagliardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Sara Del Tufo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
6
|
Hua Y, Sun Z, Xiao Y, Li H, Ma X, Luo X, Tan W, Xie Z, Zhang Z, Tang C, Zhuang H, Xu W, Zhu H, Chen Y, Shang C. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy. J Immunother Cancer 2024; 12:e008953. [PMID: 39029924 PMCID: PMC11261678 DOI: 10.1136/jitc-2024-008953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be further explored. We aimed to develop a radiomics model to noninvasively predict the efficacy of LPI therapy. METHODS Clinical data of patients with HCC receiving LPI therapy were collected in our institution. The clinical model was built with clinical information. Nine machine learning classifiers were tested and the multilayer perceptron classifier with optimal performance was used as the radiomics model. The clinical-radiomics model was constructed by integrating clinical and radiomics scores through logistic regression analysis. RESULTS 151 patients were enrolled in this study (2:1 randomization, 101 and 50 in the training and validation cohorts), of which three achieved complete response, 69 showed partial response, 46 showed stable disease, and 33 showed progressive disease. The objective response rate, disease control rate, and conversion resection rates were 47.7, 78.1 and 23.2%. 14 features were selected from the initially extracted 1223 for radiomics model construction. The area under the curves of the radiomics model (0.900 for training and 0.893 for validation) were comparable to that of the clinical-radiomics model (0.912 for training and 0.892 for validation), and both were superior to the clinical model (0.669 for training and 0.585 for validation). Meanwhile, the radiomics model can categorize participants into high-risk and low-risk groups for progression-free survival (PFS) and overall survival (OS) in the training (HR 1.913, 95% CI 1.121 to 3.265, p=0.016 for PFS; HR 4.252, 95% CI 2.051 to 8.816, p=0.001 for OS) and validation sets (HR 2.347, 95% CI 1.095 to 5.031, p=0.012 for PFS; HR 2.592, 95% CI 1.050 to 6.394, p=0.019 for OS). CONCLUSION The promising machine learning radiomics model was developed and validated to predict the efficacy of LPI therapy for patients with HCC and perform risk stratification, with comparable performance to clinical-radiomics model.
Collapse
Affiliation(s)
- Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhixian Sun
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilong Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuan Luo
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenliang Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Central South University Xiangya School of Medicine, Zhuzhou, Hunan, China
| | - Zhiqin Xie
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Central South University Xiangya School of Medicine, Zhuzhou, Hunan, China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weikai Xu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haihong Zhu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Mirza-Aghazadeh-Attari M, Srinivas T, Kamireddy A, Kim A, Weiss CR. Radiomics Features Extracted From Pre- and Postprocedural Imaging in Early Prediction of Treatment Response in Patients Undergoing Transarterial Radioembolization of Hepatic Lesions: A Systematic Review, Meta-Analysis, and Quality Appraisal Study. J Am Coll Radiol 2024; 21:740-751. [PMID: 38220040 DOI: 10.1016/j.jacr.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Transarterial radioembolization (TARE) is one of the most promising therapeutic options for hepatic masses. Radiomics features, which are quantitative numeric features extracted from medical images, are considered to have potential in predicting treatment response in TARE. This article aims to provide meta-analytic evidence and critically appraise the methodology of radiomics studies published in this regard. METHODS A systematic search was performed on PubMed, Scopus, Embase, and Web of Science. All relevant articles were retrieved, and the characteristics of the studies were extracted. The Radiomics Quality Score and Checklist for Evaluation of Radiomics Research were used to assess the methodologic quality of the studies. Pooled sensitivity, specificity, and area under the receiver operating characteristic curve in predicting objective response were determined. RESULTS The systematic review included 15 studies. The average Radiomics Quality Score of these studies was 11.4 ± 2.1, and the average Checklist for Evaluation of Radiomics Research score was 33± 6.7. There was a notable correlation (correlation coefficient = 0.73) between the two metrics. Adherence to quality measures differed considerably among the studies and even within different components of the same studies. The pooled sensitivity and specificity of the radiomics models in predicting complete or partial response were 83.5% (95% confidence interval 76%-88.9%) and 86.7% (95% confidence interval 78%-92%), respectively. CONCLUSION Radiomics models show great potential in predicting treatment response in TARE of hepatic lesions. However, the heterogeneity seen between the methodologic quality of studies may limit the generalizability of the results. Future initiatives should aim to develop radiomics signatures using multiple external datasets and adhere to quality measures in radiomics methodology.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Tara Srinivas
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Arun Kamireddy
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Alan Kim
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Clifford R Weiss
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
8
|
Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, Nougaret S, Chu L, Soyer P. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol 2024; 42:246-260. [PMID: 37926780 DOI: 10.1007/s11604-023-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Abdominal cancers continue to pose daily challenges to clinicians, radiologists and researchers. These challenges are faced at each stage of abdominal cancer management, including early detection, accurate characterization, precise assessment of tumor spread, preoperative planning when surgery is anticipated, prediction of tumor aggressiveness, response to therapy, and detection of recurrence. Technical advances in medical imaging, often in combination with imaging biomarkers, show great promise in addressing such challenges. Information extracted from imaging datasets owing to the application of radiomics can be used to further improve the diagnostic capabilities of imaging. However, the analysis of the huge amount of data provided by these advances is a difficult task in daily practice. Artificial intelligence has the potential to help radiologists in all these challenges. Notably, the applications of AI in the field of abdominal cancers are expanding and now include diverse approaches for cancer detection, diagnosis and classification, genomics and detection of genetic alterations, analysis of tumor microenvironment, identification of predictive biomarkers and follow-up. However, AI currently has some limitations that need further refinement for implementation in the clinical setting. This review article sums up recent advances in imaging of abdominal cancers in the field of image/data acquisition, tumor detection, tumor characterization, prognosis, and treatment response evaluation.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Anna Pellat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, 51092, Reims, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Romain Coriat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, 34000, Montpellier, France
- PINKCC Lab, IRCM, U1194, 34000, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France.
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
9
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
10
|
Triggiani S, Contaldo MT, Mastellone G, Cè M, Ierardi AM, Carrafiello G, Cellina M. The Role of Artificial Intelligence and Texture Analysis in Interventional Radiological Treatments of Liver Masses: A Narrative Review. Crit Rev Oncog 2024; 29:37-52. [PMID: 38505880 DOI: 10.1615/critrevoncog.2023049855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Liver lesions, including both benign and malignant tumors, pose significant challenges in interventional radiological treatment planning and prognostication. The emerging field of artificial intelligence (AI) and its integration with texture analysis techniques have shown promising potential in predicting treatment outcomes, enhancing precision, and aiding clinical decision-making. This comprehensive review aims to summarize the current state-of-the-art research on the application of AI and texture analysis in determining treatment response, recurrence rates, and overall survival outcomes for patients undergoing interventional radiological treatment for liver lesions. Furthermore, the review addresses the challenges associated with the implementation of AI and texture analysis in clinical practice, including data acquisition, standardization of imaging protocols, and model validation. Future directions and potential advancements in this field are discussed. Integration of multi-modal imaging data, incorporation of genomics and clinical data, and the development of predictive models with enhanced interpretability are proposed as potential avenues for further research. In conclusion, the application of AI and texture analysis in predicting outcomes of interventional radiological treatment for liver lesions shows great promise in augmenting clinical decision-making and improving patient care. By leveraging these technologies, clinicians can potentially enhance treatment planning, optimize intervention strategies, and ultimately improve patient outcomes in the management of liver lesions.
Collapse
Affiliation(s)
- Sonia Triggiani
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maria T Contaldo
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giulia Mastellone
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Anna M Ierardi
- Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
11
|
Ingenerf M, Grawe F, Winkelmann M, Karim H, Ruebenthaler J, Fabritius MP, Ricke J, Seidensticker R, Auernhammer CJ, Zacherl MJ, Seidensticker M, Schmid-Tannwald C. Neuroendocrine liver metastases treated using transarterial radioembolization: Identification of prognostic parameters at 68Ga-DOTATATE PET/CT. Diagn Interv Imaging 2024; 105:15-25. [PMID: 37453859 DOI: 10.1016/j.diii.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To identify prognostic clinical and imaging parameters for patients with neuroendocrine liver metastases (NELMs) undergoing transarterial radioembolization (TARE). MATERIALS AND METHODS Forty-seven patients (27 men; mean age, 64 years) with NELMs who received TARE, along with pre-procedure liver MRI and 68Ga-DOTATATE positron emission tomography/computed tomography were included. Apparent diffusion coefficient and standardized uptake value (SUV) of three liver metastases, normal spleen and liver were measured. SUVmax or SUVmean were used for the calculation of tumor-to-organ ratios (tumor-to-spleen and tumor-to-liver ratios) using all possible combinations (including SUVmax/SUVmax, SUVmax/SUVmean, and SUVmean/SUVmean). Clinical parameters (hepatic tumor-burden, presence of extra-hepatic metastases, chromograninA, Ki-67 and bilirubin levels) were assessed. Overall survival, progression-free survival (PFS) and hepatic progression-free survival (HPFS) were calculated using Kaplan-Meier curves. RESULTS Median overall survival, PFS and HPFS were 49.6, 13.1 and 28.3 months, respectively. In multivariable Cox regression analysis, low Ki-67 (≤ 5%), low hepatic tumor-burden (< 10%), absence of extrahepatic metastases, and increased Tmean/Lmax ratio were significant prognostic factors of longer overall survival and HPFS. High baseline chromograninA (> 1330 ng/mL) was associated with shorter HPFS. Tmean/Lmax > 1.9 yielded a median overall survival of 69 vs. 33 months (P < 0.04), and a median HPFS of 30 vs. 19 months (P = 0.09). For PFS, high baseline SUVmax of NELMs was the single significant parameter in the multivariable model. SUVmax > 28 resulted in a median PFS of 16.9 vs. 6.5 months, respectively (P = 0.001). CONCLUSION High preinterventional Tmean/Lmax ratios, and high SUVmax on 68Ga-DOTATATE positron emission tomography/computed tomography seem to have prognostic value in patients with NELMs undergoing TARE, potentially aiding patient selection and management alongside conventional variables.
Collapse
Affiliation(s)
- Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Homeira Karim
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Ruebenthaler
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; Interdisciplinary Centre of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; Interdisciplinary Centre of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Christoph Josef Auernhammer
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377 Munich, Germany; Interdisciplinary Centre of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; Interdisciplinary Centre of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; Interdisciplinary Centre of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
12
|
Gómez FM, Van der Reijd DJ, Panfilov IA, Baetens T, Wiese K, Haverkamp-Begemann N, Lam SW, Runge JH, Rice SL, Klompenhouwer EG, Maas M, Helmberger T, Beets-Tan RG. Imaging in interventional oncology, the better you see, the better you treat. J Med Imaging Radiat Oncol 2023; 67:895-902. [PMID: 38062853 DOI: 10.1111/1754-9485.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
Imaging and image processing is the fundamental pillar of interventional oncology in which diagnostic, procedure planning, treatment and follow-up are sustained. Knowing all the possibilities that the different image modalities can offer is capital to select the most appropriate and accurate guidance for interventional procedures. Despite there is a wide variability in physicians preferences and availability of the different image modalities to guide interventional procedures, it is important to recognize the advantages and limitations for each of them. In this review, we aim to provide an overview of the most frequently used image guidance modalities for interventional procedures and its typical and future applications including angiography, computed tomography (CT) and spectral CT, magnetic resonance imaging, Ultrasound and the use of hybrid systems. Finally, we resume the possible role of artificial intelligence related to image in patient selection, treatment and follow-up.
Collapse
Affiliation(s)
- Fernando M Gómez
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ilia A Panfilov
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tarik Baetens
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kevin Wiese
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Siu W Lam
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Samuel L Rice
- Radiology, Interventional Radiology Section, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und Minimal-Invasive Therapie, München Klinik Bogenhausen, Munich, Germany
| | - Regina Gh Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
13
|
Hsieh C, Laguna A, Ikeda I, Maxwell AWP, Chapiro J, Nadolski G, Jiao Z, Bai HX. Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma. Radiology 2023; 309:e222891. [PMID: 37934098 DOI: 10.1148/radiol.222891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.
Collapse
Affiliation(s)
- Celina Hsieh
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Amanda Laguna
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Ian Ikeda
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Aaron W P Maxwell
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Julius Chapiro
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Gregory Nadolski
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Zhicheng Jiao
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Harrison X Bai
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| |
Collapse
|
14
|
Boutin L, Morisson L, Riché F, Barthélémy R, Mebazaa A, Soyer P, Gallix B, Dohan A, Chousterman BG. Radiomic analysis of abdominal organs during sepsis of digestive origin in a French intensive care unit. Acute Crit Care 2023; 38:343-352. [PMID: 37652864 PMCID: PMC10497895 DOI: 10.4266/acc.2023.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Sepsis is a severe and common cause of admission to the intensive care unit (ICU). Radiomic analysis (RA) may predict organ failure and patient outcomes. The objective of this study was to assess a model of RA and to evaluate its performance in predicting in-ICU mortality and acute kidney injury (AKI) during abdominal sepsis. METHODS This single-center, retrospective study included patients admitted to the ICU for abdominal sepsis. To predict in-ICU mortality or AKI, elastic net regularized logistic regression and the random forest algorithm were used in a five-fold cross-validation set repeated 10 times. RESULTS Fifty-five patients were included. In-ICU mortality was 25.5%, and 76.4% of patients developed AKI. To predict in-ICU mortality, elastic net and random forest models, respectively, achieved areas under the curve (AUCs) of 0.48 (95% confidence interval [CI], 0.43-0.54) and 0.51 (95% CI, 0.46-0.57) and were not improved combined with Simplified Acute Physiology Score (SAPS) II. To predict AKI with RA, the AUC was 0.71 (95% CI, 0.66-0.77) for elastic net and 0.69 (95% CI, 0.64-0.74) for random forest, and these were improved combined with SAPS II, respectively; AUC of 0.94 (95% CI, 0.91-0.96) and 0.75 (95% CI, 0.70-0.80) for elastic net and random forest, respectively. CONCLUSIONS This study suggests that RA has poor predictive performance for in-ICU mortality but good predictive performance for AKI in patients with abdominal sepsis. A secondary validation cohort is needed to confirm these results and the assessed model.
Collapse
Affiliation(s)
- Louis Boutin
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, Paris, France
- INSERM UMR-S 942, MASCOT, Université Paris Cité, Paris, France
| | - Louis Morisson
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, Paris, France
| | - Florence Riché
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, Paris, France
| | - Romain Barthélémy
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, Paris, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, Paris, France
- INSERM UMR-S 942, MASCOT, Université Paris Cité, Paris, France
| | - Philippe Soyer
- INSERM UMR-S 942, MASCOT, Université Paris Cité, Paris, France
- Department of Radiology, Cochin Hospital, AP-HP, Paris, France
| | - Benoit Gallix
- IHU Strasbourg, Strasbourg, France
- Icube Laboratory and Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Department of Radiology, McGill University, Montreal, QC, Canada
| | - Anthony Dohan
- INSERM UMR-S 942, MASCOT, Université Paris Cité, Paris, France
- Department of Radiology, Cochin Hospital, AP-HP, Paris, France
| | - Benjamin G Chousterman
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, Paris, France
- INSERM UMR-S 942, MASCOT, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Wang Y, Liu Z, Xu H, Yang D, Jiang J, Asayo H, Yang Z. MRI-based radiomics model and nomogram for predicting the outcome of locoregional treatment in patients with hepatocellular carcinoma. BMC Med Imaging 2023; 23:67. [PMID: 37254089 DOI: 10.1186/s12880-023-01030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Prediction of locoregional treatment response is important for further therapeutic strategy in patients with hepatocellular carcinoma. This study aimed to investigate the role of MRI-based radiomics and nomogram for predicting the outcome of locoregional treatment in patients with hepatocellular carcinoma. METHODS The initial postoperative MRI after locoregional treatment in 100 patients with hepatocellular carcinoma was retrospectively analysed. The outcome was evaluated according to mRECIST at 6 months. We delineated the tumour volume of interest on arterial phase, portal venous phase and T2WI. The radiomics features were selected by using the independent sample t test or nonparametric Mann‒Whitney U test and the least absolute shrinkage and selection operator. The clinical variables were selected by using univariate analysis and multivariate analysis. The radiomics model and combined model were constructed via multivariate logistic regression analysis. A nomogram was constructed that incorporated the Rad score and selected clinical variables. RESULTS Fifty patients had an objective response, and fifty patients had a nonresponse. Nine radiomics features in the arterial phase were selected, but none of the portal venous phase or T2WI radiomics features were predictive of the treatment response. The best radiomics model showed an AUC of 0.833. Two clinical variables (hCRP and therapy method) were selected. The AUC of the combined model was 0.867. There was no significant difference in the AUC between the combined model and the best radiomics model (P = 0.573). Decision curve analysis demonstrated the nomogram has satisfactory predictive value. CONCLUSIONS MRI-based radiomics analysis may serve as a promising and noninvasive tool to predict outcome of locoregional treatment in HCC patients, which will facilitate the individualized follow-up and further therapeutic strategies guidance.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenhao Liu
- Department of Radiology, Affiliated Hospital of Changzhi Institute of Traditional Chinese Medicine, Changzhi, 046099, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Himeko Asayo
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
16
|
Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers (Basel) 2023; 15:cancers15041105. [PMID: 36831445 PMCID: PMC9954441 DOI: 10.3390/cancers15041105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.
Collapse
|
17
|
İnce O, Önder H, Gençtürk M, Cebeci H, Golzarian J, Young S. Prediction of Response of Hepatocellular Carcinoma to Radioembolization: Machine Learning Using Preprocedural Clinical Factors and MR Imaging Radiomics. J Vasc Interv Radiol 2023; 34:235-243.e3. [PMID: 36384224 DOI: 10.1016/j.jvir.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022] Open
Abstract
PURPOSE To create and evaluate the ability of machine learning-based models with clinicoradiomic features to predict radiologic response after transarterial radioembolization (TARE). MATERIALS AND METHODS 82 treatment-naïve patients (65 responders and 17 nonresponders; median age: 65 years; interquartile range: 11) who underwent selective TARE were included. Treatment responses were evaluated using the European Association for the Study of the Liver criteria at 3-month follow-up. Laboratory, clinical, and procedural information were collected. Radiomic features were extracted from pretreatment contrast-enhanced T1-weighted magnetic resonance images obtained within 3 months before TARE. Feature selection consisted of intraclass correlation, followed by Pearson correlation analysis and finally, sequential feature selection algorithm. Support vector machine, logistic regression, random forest, and LightGBM models were created with both clinicoradiomic features and clinical features alone. Performance metrics were calculated with a nested 5-fold cross-validation technique. The performances of the models were compared by Wilcoxon signed-rank and Friedman tests. RESULTS In total, 1,128 features were extracted. The feature selection process resulted in 12 features (8 radiomic and 4 clinical features) being included in the final analysis. The area under the receiver operating characteristic curve values from the support vector machine, logistic regression, random forest, and LightGBM models were 0.94, 0.94, 0.88, and 0.92 with clinicoradiomic features and 0.82, 0.83, 0.82, and 0.83 with clinical features alone, respectively. All models exhibited significantly higher performances when radiomic features were included (P = .028, .028, .043, and .028, respectively). CONCLUSIONS Based on clinical and imaging-based information before treatment, machine learning-based clinicoradiomic models demonstrated potential to predict response to TARE.
Collapse
Affiliation(s)
- Okan İnce
- Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota.
| | - Hakan Önder
- Department of Radiology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Health Sciences University, Istanbul, Turkey
| | - Mehmet Gençtürk
- Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Hakan Cebeci
- Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jafar Golzarian
- Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Shamar Young
- Department of Radiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
18
|
Cassinotto C, Nogue E, Durand Q, Panaro F, Assenat E, Dohan A, Malafaye N, Guiu B, Molinari N. Life expectancy of patients with hepatocellular carcinoma according to the upfront treatment: A nationwide analysis. Diagn Interv Imaging 2023; 104:192-199. [PMID: 36682959 DOI: 10.1016/j.diii.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to update the life expectancy of patients with hepatocellular carcinoma (HCC) in an exhaustive nationwide population according to the upfront treatment performed. MATERIALS AND METHODS From the French Program for the Medicalization of Information System database, all patients older than 18 years diagnosed with a de novo HCC from January 2011 to December 2018 were retrospectively selected. Five-year survival rates (95% confidence intervals [CI]) were computed according to the first surgical or interventional radiology procedures performed. RESULTS A total of 63,996 patients (80% men) with a median age of 68 years (Q1, Q3: 61, 77) were selected, including 24,007 patients who underwent at least one procedure (5-year survival of 45.5%; (95% CI: 44.8-46.2), and 39,989 with none (5-year survival, 9.6%; (95% CI: 9.3-10.0). Only 20.5% (13,101/63,996) of patients could undergo an upfront curative procedure. Liver transplantation achieved the best outcome, whether performed upfront (n = 791; 5-year survival, 79.0% [95% CI: 76.1-82.1]) or during subsequent steps (n = 2217; 5-year survival 80.9% [95% CI: 79.2-82.7]). Tumor ablation (n = 5306), open resection (n = 5171), and minimally-invasive resection (n = 1833) achieved 5-year survival rates of 53.8% (95% CI: 52.3-55.4), 54.1% (95% CI: 52.6-55.6), and 66.2% (95% CI: 63.7-68.7), respectively, with more patients with cirrhosis and subsequent procedures in the tumor ablation group. Patients with upfront transarterial (chemo)embolization (n = 10,247) and selective internal radiation therapy (n = 659) had 5-year survival rates of 31.3% (95% CI: 30.3-32.4) and 18.5% (95% CI: 15.2-22.5). CONCLUSION While HCC remains mostly diagnosed at an advanced stage associated with a poor prognosis, all the curative options provide 5-year survival rates above 50%.
Collapse
Affiliation(s)
- Christophe Cassinotto
- Department of Diagnostic and Interventional Radiology, Saint-Eloi Hospital, University Hospital of Montpellier, 34090 Montpellier, France; Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, University Hospital of Montpellier, 34090 Montpellier, France.
| | - Erika Nogue
- Clinical Research and Epidemiology Unit, University Hospital of Montpellier, Montpellier University, 34090 Montpellier, France
| | - Quentin Durand
- Department of Diagnostic and Interventional Radiology, Saint-Eloi Hospital, University Hospital of Montpellier, 34090 Montpellier, France
| | - Fabrizio Panaro
- Department of Surgery/ Division of HBP Surgery and Transplantation, Saint-Eloi Hospital, University Hospital of Montpellier, 34090 Montpellier, France
| | - Eric Assenat
- Department of Oncology, Saint-Eloi Hospital, University Hospital of Montpellier, 34090 Montpellier, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Nicolas Malafaye
- Clinical Research and Epidemiology Unit, University Hospital of Montpellier, Montpellier University, 34090 Montpellier, France
| | - Boris Guiu
- Department of Diagnostic and Interventional Radiology, Saint-Eloi Hospital, University Hospital of Montpellier, 34090 Montpellier, France; Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, University Hospital of Montpellier, 34090 Montpellier, France
| | - Nicolas Molinari
- Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, University Hospital of Montpellier, 34090 Montpellier, France; Clinical Research and Epidemiology Unit, University Hospital of Montpellier, Montpellier University, 34090 Montpellier, France
| |
Collapse
|
19
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
20
|
Young S, Flanagan S, D'Souza D, Todatry S, Ragulojan R, Sanghvi T, Golzarian J. Lung shunt fraction calculations before Y-90 transarterial radioembolization: Comparison of accuracy and clinical significance of planar scintigraphy and SPECT/CT. Diagn Interv Imaging 2023; 104:185-191. [PMID: 36604211 DOI: 10.1016/j.diii.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To determine the accuracy and clinical significance of planar scintigraphy lung shunt fraction (PLSF) and single-photon emission computerized tomography (SPECT) computed tomography (CT) lung shunt fraction (SLSF) before Y-90 transarterial radioembolization. MATERIALS AND METHODS Seventy patients (46 men, 24 women; mean age, 64 ± 9.5 [SD] years) who underwent 83 treatments with Y-90 transarterial radioembolization for primary or secondary malignancies of the liver with a PLSF ≥ 7.5% were retrospectively evaluated. The patients mapping technetium 99 m (Tc-99 m) macroaggregated albumin (MAA) PLSF and SLSF were calculated and compared to the post Y-90 delivery SLSF. A model using modern dose thresholds was created to identify patients who would require dose reduction due to a lung dose ≥ 30 Gy, with patients who required >50% dose reduction considered to be delivery cancelations. RESULTS A significant difference was found between mean PLSF (14.7 ± 11.6 [SD]%; range: 7.5-84.1%) and mean SLSF (8.7 ± 8.5 [SD]%; range: 1.7-73.5) (P < 0.001). The mean realized LSF (7.1 ± 3 [SD]%; range:1.5-17.6) was significantly less than the PLSF (P <0.001) but not the SLSF (P = 0.07). PLSF significantly overestimated the realized LSF by more than the SLSF (8.5 ± 5.3 [SD] % [range: -0.1-21.7] vs. 0.8 ± 3.6 [SD] % [range: -5-13.2], respectively) (P < 0.001). Based on the clinical significance model, 20 patients (20/83, 24.1%) would have required dose reduction or cancelation when using PLSF but would not require even a dose reduction when using the SLSF. Significantly more deliveries would have been be canceled if PLSF was used as compared to SLSF (22/83 [26.5%] vs. 6/83 [7.2%], respectively) (P < 0.001). CONCLUSION SLSF is significantly more accurate at predicting realized LSF than PLSF and this difference is of clinical significance in a number of patients with a PLSF ≥ 7.5%.
Collapse
Affiliation(s)
- Shamar Young
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, Tucson, AZ 85724, USA
| | - Siobhan Flanagan
- Department of Radiology, Division of Interventional Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donna D'Souza
- Department of Radiology, Division of Interventional Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Soorya Todatry
- Department of Radiology, Division of Interventional Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ranjan Ragulojan
- Department of Radiology, Division of Interventional Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tina Sanghvi
- Department of Radiology, Arizona Veterans Administration Hospital, Minneapolis, MN 55417, USA
| | - Jafar Golzarian
- Department of Radiology, Division of Interventional Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|