1
|
Wang X, He S, Wang K, Wang X, Yan T, Yan T, Wang Z. Fabrication of betamethasone micro- and nanoparticles using supercritical antisolvent technology: In vitro drug release study and Caco-2 cell cytotoxicity evaluation. Eur J Pharm Sci 2023; 181:106341. [PMID: 36435356 DOI: 10.1016/j.ejps.2022.106341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Poor solubility limits the pharmacological activities of betamethasone (BM), including its anti-inflammatory and anti-allergic effects. To improve the aqueous solubility and dissolution rate of BM, supercritical antisolvent (SAS) technology was used to prepare BM microparticles and BM-polyvinylpyrrolidone (PVP) solid dispersion nanoparticles. The effects of temperature, pressure, solution feeding rate, and drug concentration on particle formation were investigated using both single-factor and orthogonal experimental methods, and the optimal preparation process was screened. The physicochemical properties of the BM particles were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction. After the SAS process, the particle size was reduced significantly and the crystalline shape was altered, which considerably increased the solubility and dissolution rate of BM. Furthermore, the toxicity of BM to live cells was reduced because of the BM-PVP solid dispersions.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China; Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Shuang He
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Kaiye Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Tingyuan Yan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Tingxuan Yan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China.
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
2
|
Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. J Control Release 2018; 283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022]
|