1
|
Ibrahim KA, Naidu AS, Miljkovic H, Radenovic A, Yang W. Label-Free Techniques for Probing Biomolecular Condensates. ACS NANO 2024; 18:10738-10757. [PMID: 38609349 DOI: 10.1021/acsnano.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.
Collapse
|
2
|
Ibrahim KA, Grußmayer KS, Riguet N, Feletti L, Lashuel HA, Radenovic A. Label-free identification of protein aggregates using deep learning. Nat Commun 2023; 14:7816. [PMID: 38016971 PMCID: PMC10684545 DOI: 10.1038/s41467-023-43440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Protein misfolding and aggregation play central roles in the pathogenesis of various neurodegenerative diseases (NDDs), including Huntington's disease, which is caused by a genetic mutation in exon 1 of the Huntingtin protein (Httex1). The fluorescent labels commonly used to visualize and monitor the dynamics of protein expression have been shown to alter the biophysical properties of proteins and the final ultrastructure, composition, and toxic properties of the formed aggregates. To overcome this limitation, we present a method for label-free identification of NDD-associated aggregates (LINA). Our approach utilizes deep learning to detect unlabeled and unaltered Httex1 aggregates in living cells from transmitted-light images, without the need for fluorescent labeling. Our models are robust across imaging conditions and on aggregates formed by different constructs of Httex1. LINA enables the dynamic identification of label-free aggregates and measurement of their dry mass and area changes during their growth process, offering high speed, specificity, and simplicity to analyze protein aggregation dynamics and obtain high-fidelity information.
Collapse
Affiliation(s)
- Khalid A Ibrahim
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kristin S Grußmayer
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lely Feletti
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Lyubchenko YL, Gall AA, Shlyakhtenko LS. Visualization of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 2014; 1117:367-84. [PMID: 24357372 DOI: 10.1007/978-1-62703-776-1_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This article describes sample preparation techniques for AFM imaging of DNA and protein-DNA complexes. The approach is based on chemical functionalization of the mica surface with aminopropyl silatrane (APS) to yield an APS-mica surface. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations, and in a broad range of pH. The chapter describes the methodologies for the preparation of APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The AFM applications are illustrated with examples of images of DNA and protein-DNA complexes.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
4
|
Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 2012; 931:295-312. [PMID: 23027008 DOI: 10.1007/978-1-62703-056-4_14] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface preparation is a key step for reliable and reproducible imaging of DNA and protein-DNA complexes with atomic force microscopy (AFM). This article describes the approaches for chemical functionalization of the mica surface. One approach utilizes 3-aminopropyl-trietoxy silane (APTES), enabling one to obtain a smooth surface termed AP-mica. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations and in a broad range of pH. Another method utilizes aminopropyl silatrane (APS) to yield an APS-mica surface. The advantage of APS-mica compared with AP-mica is the ability to obtain reliable and reproducible time-lapse images in aqueous solutions. The chapter describes the methodologies for the preparation of AP-mica and APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The applications are illustrated with a number of examples.
Collapse
|
5
|
Oboroceanu D, Wang L, Brodkorb A, Magner E, Auty MAE. Characterization of beta-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3667-3673. [PMID: 20187607 DOI: 10.1021/jf9042908] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggregation process of beta-lactoglobulin (beta-lg) from 0 min to 20 h was studied using atomic force microscopy (AFM), scanning transmission electron microscopy (STEM), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and in situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Fibril assembly was monitored in real time using AFM up to 20 h. From 0 to 85 min, beta-lg monomers deformed and expanded with some aggregation. After 85 min, fibrillar structures were formed, exceeding 10 mum in length. Fibrillar structures were confirmed by STEM. Secondary structural changes occurring during fibril formation were monitored by ATR-FTIR at 80 degrees C and indicated a decrease in alpha-helix content and an increase in beta-sheet content. SDS-PAGE indicated that fibrils were composed of polypeptides and not intact monomers. In this study, beta-lg and whey protein isolate (WPI)-derived fibrils, including some double helices, in water were observed by AFM under ambient conditions and in their native aqueous environment.
Collapse
Affiliation(s)
- Daniela Oboroceanu
- Moorepark Food Research Centre, Teagasc, Moorepark, Fermoy, County Cork, Ireland
| | | | | | | | | |
Collapse
|
6
|
Kokona B, Kim AM, Roden RC, Daniels JP, Pepe-Mooney BJ, Kovaric BC, de Paula JC, Johnson KA, Fairman R. Self assembly of coiled-coil peptide-porphyrin complexes. Biomacromolecules 2009; 10:1454-9. [PMID: 19374349 DOI: 10.1021/bm9000553] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We are interested in the controlled assembly of photoelectronic materials using peptides as scaffolds and porphyrins as the conducting material. We describe the integration of a peptide-based polymer strategy with the ability of designed basic peptides to bind anionic porphyrins in order to create regulated photoelectronically active biomaterials. We have described our peptide system in earlier work, which demonstrates the ability of a peptide to form filamentous materials made up of self-assembling coiled-coil structures. We have modified this peptide system to include lysine residues appropriately positioned to specifically bind meso-tetrakis(4-sulfonatophenyl)porphine (TPPS(4)), a porphyrin that contains four negatively charged sulfonate groups at neutral pH. We measure the binding of TPPS(4) to our peptide using UV--visible and fluorescence spectroscopies to follow the porphyrin signature. We determine the concomitant acquisition of helical secondary structure in the peptide upon TPPS(4) binding using circular dichroism spectropolarimetry. This binding fosters polymerization of the peptide, as shown by absorbance extinction effects in the peptide CD spectra. The morphologies of the peptide/porphyrin complexes, as imaged by atomic force microscopy, are consistent with the coiled-coil polymers that we had characterized earlier, except that the heights are slightly higher, consistent with porphyrin binding. Evidence for exciton coupling in the copolymers is shown by red-shifting in the UV--visible data, however, the coupling is weak based on a lack of fluorescence quenching in fluorescence experiments.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lyubchenko YL, Shlyakhtenko LS, Gall AA. Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods Mol Biol 2009; 543:337-351. [PMID: 19378175 DOI: 10.1007/978-1-60327-015-1_21] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite their rather recent invention, atomic force microscopes are widely available commercially. AFM and its special modifications (tapping mode and noncontact operation in solution) have been successfully used for topographic studies of a large number of biological objects including DNA, RNA, proteins, cell membranes, and even whole cells. AFM was also successfully applied to studies of nucleic acids and various protein DNA complexes. Part of this success is due to the development of reliable sample preparation procedures. This chapter describes one of the approaches based on chemical functionalization of mica surface with 1-(3-aminopropyl) silatrane (APS). One of the most important properties of APS-mica approach is that the sample can be deposited on the surface in a wide range of ionic strengths, in the absence of divalent cations and a broad range of pH. In addition to imaging of dried sample, APS-mica allows reliable and reproducible time lapse imaging in aqueous solutions. Finally, APS mica is terminated with reactive amino groups that can be used for covalent and ionic attachment of molecules for AFM force spectroscopy studies. The protocols for the preparation of APS, functionalization with APS mica and AFM probes, preparation of samples for imaging in air and in aqueous solutions, and force spectroscopy studies are outlined. All these applications are illustrated with a few examples.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | |
Collapse
|
8
|
Lyubchenko YL, Shlyakhtenko LS. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 2008; 47:206-13. [PMID: 18835446 DOI: 10.1016/j.ymeth.2008.09.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022] Open
Abstract
This paper describes protocols for studies of structure and dynamics of DNA and protein-DNA complexes with atomic force microscopy (AFM) utilizing the surface chemistry approach. The necessary specifics for the preparation of functionalized surfaces and AFM probes with the use of silanes and silatranes, including the protocols for synthesis of silatranes are provided. The methodology of studies of local and global conformations DNA with the major focus on the time-lapse imaging of DNA in aqueous solutions is illustrated by the study of dynamics of Holliday junctions including branch migration. The analysis of nucleosome dynamics is selected as an example to illustrate the application of the time-lapse AFM to studies of dynamics of protein-DNA complexes. The force spectroscopy is the modality of AFM with a great importance to various fields of biomedical studies. The AFM force spectroscopy approach for studies of specific protein-DNA complexes is illustrated by the data on analysis of dynamics of synaptic SfiI-DNA complexes. When necessary, additional specifics are added to the corresponding example.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, COP 1012, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|
9
|
Walker JR, Gnanam AJ, Blinkova AL, Hermandson MJ, Karymov MA, Lyubchenko YL, Graves PR, Haystead TA, Linse KD. Clostridium taeniosporum spore ribbon-like appendage structure, composition and genes. Mol Microbiol 2007; 63:629-43. [PMID: 17302797 DOI: 10.1111/j.1365-2958.2006.05494.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clostridium taeniosporum spores have about 12 large, flat, ribbon-like appendages attached through a common trunk at one spore pole to a previously unknown surface layer outside the coat that is proposed to be called the 'encasement'. Appendages are about 4.5 microm long, 0.5 microm wide and 30 nm thick and taper at the attachment end into a semicircle that is twisted relative to the flat ribbon. Individual fibrils, about 45 nm in length with spherical heads and long thin tails, form a hair-like nap, visible along the appendage edge. Four appendage proteins have been detected: a paralogous pair of 29 kDa (designated P29a and P29b), a glycoprotein of about 37 kDa (designated GP85) and an orthologue of the Bacillus spore morphogenetic protein SpoVM. The P29 proteins consist of duplicated regions and each region includes a domain of unknown function 11. The GP85 glycoprotein contains a collagen-like region. The genes for P29a and b, GP85 and possibly related proteins are closely linked on two small chromosome fragments. Putative sigma(K)-dependent promoters upstream of the P29a and b genes indicate that they likely are expressed late in the mother cell, consistent with their deposition into the layer external to the coat.
Collapse
Affiliation(s)
- James R Walker
- Molecular Genetics and Microbiology Section and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|