1
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Kim JY, Kim J, Kim YI, Yang DH, Yoo C, Park IJ, Ryoo BY, Ryu JS, Hong SM. Somatostatin receptor 2 (SSTR2) expression is associated with better clinical outcome and prognosis in rectal neuroendocrine tumors. Sci Rep 2024; 14:4047. [PMID: 38374188 PMCID: PMC10876978 DOI: 10.1038/s41598-024-54599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Somatostatin analogues have recently been used as therapeutic targets for metastatic or surgically unresectable gastroenteropancreatic (GEP) neuroendocrine tumors (NETs), and associated somatostatin receptor (SSTR) expression has been well demonstrated in most GEP NETs, with the exception of rectal NETs. SSTR2 immunohistochemical expressions were evaluated in 350 surgically or endoscopically resected rectal NETs and compared to clinicopathologic factors. SSTR2 expression was observed in 234 (66.9%) rectal NET cases and associated tumors with smaller size (p = 0.001), low pT classification (p = 0.030), low AJCC tumor stage (p = 0.012), and absence of chromogranin expression (p = 0.009). Patients with rectal NET and SSTR2 expression had significantly better overall survival than those without SSTR2 expression both by univariable (p = 0.006) and multivariable (p = 0.014) analyses. In summary, approximately two-thirds of rectal NETs expressed SSTR2. SSTR2 expression was significantly associated with favorable behavior and good overall survival in patients with rectal NETs. Furthermore, SSTR2 expression can be used as prognostic factors. When metastatic disease occurs, SSTR2 expression can be used a possible target for somatostatin analogues.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Pathology, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jisup Kim
- Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Inchon, Republic of Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Departments of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Ja Park
- Departments of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Xie X, Geng C, Li X, Liao J, Li Y, Guo Y, Wang C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022; 151:170753. [PMID: 35114316 DOI: 10.1016/j.peptides.2022.170753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
The intestinal barrier is a dynamic entity that is organized as a multilayer system and includes various intracellular and extracellular elements. The gut barrier functions in a coordinated manner to impede the passage of antigens, toxins, and microbiome components and simultaneously preserves the balanced development of the epithelial barrier and the immune system and the acquisition of tolerance to dietary antigens and intestinal pathogens.Numerous scientific studies have shown a significant association between gut barrier damage and gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and hepatic fibrosis. Various internal and external factors regulate the intestinal barrier. Gastrointestinal peptides originate from enteroendocrine cells in the luminal digestive tract and are critical gut barrier regulators. Recent studies have demonstrated that gastrointestinal peptides have a therapeutic effect on digestive tract diseases, enhancing epithelial barrier activity and restoring the gut barrier. This review demonstrates the roles and mechanisms of gastrointestinal polypeptides, especially somatostatin (SST) and vasoactive intestinal peptide (VIP), in intestinal barrier regulation.
Collapse
Affiliation(s)
- Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Liao
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Lee K, Ahn B, Hong SM, Ahn JY, Gong CS, Ryu JS. A Case of Glomus Tumor Mimicking Neuroendocrine Tumor on 68 Ga-DOTATOC PET/CT. Nucl Med Mol Imaging 2021; 55:315-319. [PMID: 34868381 DOI: 10.1007/s13139-021-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
68 Ga-DOTA-peptide PET/CT is a valuable tool for diagnosing neuroendocrine tumors (NET). Various tumors and normal human tissue express the somatostatin receptor (SSTR), warranting attention to positive findings on 68 Ga-DOTA-peptide PET/CT. However, overexpression of SSTR in glomus tumors has not yet been reported. Gastric glomus tumors show many similar features of NET and are often misdiagnosed. We present the case of a 61-year-old male with a glomus tumor who underwent distal gastrectomy under the pretense of an NET grade 1 because the nodule showed focal intense uptake on preoperative 68 Ga-DOTATOC PET/CT.
Collapse
Affiliation(s)
- Koeun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| | - Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Yong Ahn
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chung Sik Gong
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
5
|
Spada F, Rossi RE, Kara E, Laffi A, Massironi S, Rubino M, Grimaldi F, Bhoori S, Fazio N. Carcinoid Syndrome and Hyperinsulinemic Hypoglycemia Associated with Neuroendocrine Neoplasms: A Critical Review on Clinical and Pharmacological Management. Pharmaceuticals (Basel) 2021; 14:ph14060539. [PMID: 34199977 PMCID: PMC8228616 DOI: 10.3390/ph14060539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
The carcinoid syndrome (CS) and hyperinsulinemic hypoglycemia (HH) represent two of the most common clinical syndromes associated with neuroendocrine neoplasms (NENs). The former is mainly related to the serotonin secretion by a small bowel NEN, whereas the latter depends on an insulin hypersecretion by a pancreatic insulinoma. Both syndromes/conditions can affect prognosis and quality of life of patients with NENs. They are often diagnosed late when patients become strongly symptomatic. Therefore, their early detection and management are a critical step in the clinical management of NEN patients. A dedicated and experienced multidisciplinary team with appropriate therapeutic strategies is needed and should be encouraged to optimize clinical outcomes. This review aims to critically analyze clinical features, evidence and treatment options of CS and HH and therefore to improve their management.
Collapse
Affiliation(s)
- Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, via G. Ripamonti 435, 20141 Milano, Italy; (F.S.); (A.L.); (M.R.)
| | - Roberta E. Rossi
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori (INT), via G. Venezian 1, 20133 Milano, Italy; (R.E.R.); (S.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, 20122 Milano, Italy
| | - Elda Kara
- Endocrinology and Metabolism Unit, University Hospital S. Maria della Misericordia, Piazzale Santa Maria della Misericordia, 15, 33100 Udine, Italy; (E.K.); (F.G.)
| | - Alice Laffi
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, via G. Ripamonti 435, 20141 Milano, Italy; (F.S.); (A.L.); (M.R.)
| | - Sara Massironi
- Division of Gastroenterology, San Gerardo Hospital, Bicocca School of Medicine, University of Milano Bicocca, 20126 Milano, Italy;
| | - Manila Rubino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, via G. Ripamonti 435, 20141 Milano, Italy; (F.S.); (A.L.); (M.R.)
| | - Franco Grimaldi
- Endocrinology and Metabolism Unit, University Hospital S. Maria della Misericordia, Piazzale Santa Maria della Misericordia, 15, 33100 Udine, Italy; (E.K.); (F.G.)
| | - Sherrie Bhoori
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori (INT), via G. Venezian 1, 20133 Milano, Italy; (R.E.R.); (S.B.)
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, via G. Ripamonti 435, 20141 Milano, Italy; (F.S.); (A.L.); (M.R.)
- Correspondence: ; Tel.: +39-025-748-9258
| |
Collapse
|
6
|
Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2020; 106:887-897. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| |
Collapse
|
7
|
Gonkowski S, Rytel L. Somatostatin as an Active Substance in the Mammalian Enteric Nervous System. Int J Mol Sci 2019; 20:ijms20184461. [PMID: 31510021 PMCID: PMC6769505 DOI: 10.3390/ijms20184461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin (SOM) is an active substance which most commonly occurs in endocrine cells, as well as in the central and peripheral nervous system. One of the parts of the nervous system where the presence of SOM has been confirmed is the enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract. It regulates most of the functions of the stomach and intestine and it is characterized by complex organization and a high degree of independence from the central nervous system. SOM has been described in the ENS of numerous mammal species and its main functions in the GI tract are connected with the inhibition of the intestinal motility and secretory activity. Moreover, SOM participates in sensory and pain stimuli conduction, modulation of the release of other neuronal factors, and regulation of blood flow in the intestinal vessels. This peptide is also involved in the pathological processes in the GI tract and is known as an anti-inflammatory agent. This paper, which focuses primarily on the distribution of SOM in the ENS and extrinsic intestinal innervation in various mammalian species, is a review of studies concerning this issue published from 1973 to the present.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland.
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
8
|
Chen X, Zhang XY, Shen Y, Fan LL, Ren ML, Wu YP. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget 2018; 7:83451-83461. [PMID: 27825139 PMCID: PMC5347781 DOI: 10.18632/oncotarget.13120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound.
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao-Yu Zhang
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li-Li Fan
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mu-Lan Ren
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yong-Ping Wu
- Jiangsu Provincial Institute of Materia Medica, Nanjing 210009, China
| |
Collapse
|
9
|
Massironi S, Conte D, Rossi RE. Somatostatin analogues in functioning gastroenteropancreatic neuroendocrine tumours: literature review, clinical recommendations and schedules. Scand J Gastroenterol 2016; 51:513-23. [PMID: 26605828 DOI: 10.3109/00365521.2015.1115117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Neuroendocrine tumours (NETs) represent a heterogeneous group of neoplasms, which include functioning and non-functioning forms. Somatostatin analogues (SSAs) play a key role in the management of these tumours. Herein, we aimed at reviewing the current evidence about the role of SSAs in the treatment of gastro-entero-pancreatic (GEP)-NETs. MATERIAL AND METHODS An extensive bibliographical search was performed in PubMed using the following keywords: gastro-entero-pancreatic neuroendocrine tumours, somatostatin analogues, octreotide, lanreotide, in order to identify all the pertinent English-written articles published between 1990 and 2015. RESULTS SSAs have shown to help the symptomatic and biochemical improvement of patients with NETs and to exhibit a good safety profile. Recent studies have also reported a role for SSAs in tumour growth control, although the results are less impressive and the underlying mechanisms are not fully understood. CONCLUSIONS SSAs are well known as a symptomatic and, to lesser extent, anti-proliferative treatment in GEP-NETs. However, some issues, including optimal dosage, benefits and adverse events of combination with other molecules, and the role of new analogues, remain to be elucidated in further randomised studies.
Collapse
Affiliation(s)
- Sara Massironi
- a Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Dario Conte
- a Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ;,b Department of Pathophysiology and Transplantation , Università Degli Studi Di Milano , Milan , Italy
| | - Roberta Elisa Rossi
- a Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ;,b Department of Pathophysiology and Transplantation , Università Degli Studi Di Milano , Milan , Italy
| |
Collapse
|
10
|
Liu T, Jia T, Yuan X, Liu C, Sun J, Ni Z, Xu J, Wang X, Yuan Y. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo. Int J Nanomedicine 2016; 11:2235-50. [PMID: 27284243 PMCID: PMC4883818 DOI: 10.2147/ijn.s100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. MATERIALS AND METHODS In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. RESULTS The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). CONCLUSION Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer.
Collapse
Affiliation(s)
- Tao Liu
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tingting Jia
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xia Yuan
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Cheng Liu
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian Sun
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhenhua Ni
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian Xu
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xuhui Wang
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Yuan
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Gene transcript analysis blood values correlate with 68Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status. Eur J Nucl Med Mol Imaging 2015; 42:1341-52. [DOI: 10.1007/s00259-015-3075-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
|
12
|
Lupp A, Nagel F, Schulz S. Reevaluation of sst₁ somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-7. ACTA ACUST UNITED AC 2013; 183:1-6. [PMID: 23466804 DOI: 10.1016/j.regpep.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND The somatostatin receptor 1 (sst1) is widely distributed throughout the body and is also present in neoplastic tissues. However, little is known about its precise tissue distribution, regulation and function, which may in part be due to the lack of specific monoclonal anti-sst1 antibodies. METHODS We have characterized the novel rabbit monoclonal anti-human sst1 antibody UMB-7 using sst1-expressing cells and human pituitary samples. The antibody was then used for immunohistochemical staining of a large panel of formalin-fixed, paraffin-embedded human tissues. RESULTS Western blot analyses of BON-1 cells and human pituitary revealed a broad band migrating at a molecular weight of 45,000-60,000. After enzymatic deglycosylation the size of this band decreased to a molecular weight of 45,000. UMB-7 yielded an efficient immunostaining of distinct cell populations in the human tissue samples with a predominance of plasma membrane staining, which was completely abolished by preadsorption of UMB-7 with its immunizing peptide. The sst1 receptor was detected in anterior pituitary, pancreatic islets, distal tubules, enteric ganglion cells and nerve fibers, chief cells of the gastric mucosa, macrophages and mast cells. In addition, sst1 was observed in pituitary adenomas, gastrointestinal neuroendocrine tumors and pheochromocytoma as well as in pancreatic adenocarcinomas, gastric carcinomas, urinary bladder carcinomas and sarcomas. CONCLUSIONS UMB-7 may prove of great value in the identification of sst1-expressing tumors during routine histopathological examinations. This may open up new routes for diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Falko Nagel
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Germany.
| |
Collapse
|
13
|
Gonkowski S, Całka J. The influence of selected pathological states on the somatostatin-like immunoreactive (SOM-LI) endocrine cells in the mucosal layer of the porcine descending colon. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012001300014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Lupp A, Nagel F, Doll C, Röcken C, Evert M, Mawrin C, Saeger W, Schulz S. Reassessment of sst3 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-5. Neuroendocrinology 2012; 96:301-10. [PMID: 22414742 DOI: 10.1159/000337659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Among the five somatostatin receptors (sst(1)-sst(5)), the sst(3) receptor displays a distinct pharmacological profile. Like sst(2), the sst(3) receptor efficiently internalizes radiolabeled somatostatin analogs. Unlike sst(2), however, internalized sst(3) receptors are rapidly transferred to lysosomes for degradation. Apart from this, very little is known about the clinical relevance of the sst(3) receptor, which may in part be due to the lack of specific monoclonal sst(3) antibodies. METHODS Here, we have extensively characterized the novel rabbit monoclonal anti-human sst(3) antibody UMB-5 using transfected cells and receptor-expressing tissues. UMB-5 was then subjected to immunohistochemical staining of a series of 190 formalin-fixed, paraffin-embedded normal and neoplastic human tissues. RESULTS Specificity of UMB-5 was demonstrated by detection of a broad band migrating at a molecular weight of 70,000-85,000 in immunoblots from human pituitary. After enzymatic deglycosylation, the size of this band decreased to a molecular weight of 45,000. Tissue immunostaining was completely abolished by pre-adsorption of UMB-5 with its immunizing peptide. In addition, UMB-5 detected distinct cell populations in human tissues like pancreatic islands, anterior pituitary, adrenal cortex, adrenal medulla, and enteric ganglia, similar to that seen with a rabbit polyclonal antibody generated against a different carboxyl-terminal epitope of the sst(3) receptor. In a comparative immunohistochemical study, UMB-5 yielded predominant plasma membrane staining in the majority of pituitary adenomas, pheochromocytomas, and a subset of neuroendocrine tumors. The sst(3) receptor was also present in many glioblastomas, pancreatic, breast, cervix, and ovarian carcinomas. CONCLUSION The rabbit monoclonal antibody UMB-5 may prove of great value in the identification of sst(3)-expressing tumors during routine histopathological examinations. Given its unique trafficking properties, these tumors may be potential candidates for sst(3)-directed receptor radiotherapy.
Collapse
Affiliation(s)
- Amelie Lupp
- Department of Pharmacology and Toxicology, University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Schmid HA, Lambertini C, van Vugt HH, Barzaghi-Rinaudo P, Schäfer J, Hillenbrand R, Sailer AW, Kaufmann M, Nuciforo P. Monoclonal antibodies against the human somatostatin receptor subtypes 1-5: development and immunohistochemical application in neuroendocrine tumors. Neuroendocrinology 2012; 95:232-47. [PMID: 22156600 DOI: 10.1159/000330616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/25/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Activation of somatostatin receptors (sstr1-5) by somatostatin and its analogues exerts an inhibitory effect on hormone secretion and provides the basis for the treatment of a range of endocrine diseases such as acromegaly, Cushing's disease and neuroendocrine tumors (NET). The lack of well-characterized commercially available sstr subtype-specific antibodies prevents routine identification of the sstr expression profile in patients. METHODS We generated and characterized new mouse monoclonal antibodies (mAbs) targeting the five human sstr subtypes using ELISA and immunohistochemistry, and tested their suitability in formalin-fixed and paraffin-embedded (FFPE) human tissues and archival samples of normal pancreatic tissue and NET. RESULTS All mAbs were highly specific with no cross-reactivity. The sstr1-5 immunoreactivity in gastrointestinal NET (n=67) was correlated with clinicopathologic data. With the exception of sstr3, NET were highly positive for all receptor subtypes (42, 63, 6, 32 and 65% of tumors were positive for sstr1, sstr2a, sstr3, sstr4 and sstr5, respectively). sstr1, sstr2a and sstr5 were present at the plasma membrane and in the cytoplasm of tumor cells, whereas sstr3 and sstr4 were almost exclusively cytoplasmic. Immunoreactivity of sstr1, sstr2a and sstr4 tended to decrease as tumor aggressiveness increased. sstr5 showed an opposite pattern, with higher staining in well-differentiated carcinomas compared with well-differentiated tumors. sstr5 immunoreactivity was correlated with the presence of metastases and angioinvasion, suggesting a possible association with more aggressive behavior. CONCLUSION Determination of the sstr1-5 by immunohistochemistry using subtype-specific mAbs is feasible in FFPE tissue and may provide a tool for routine clinical practice.
Collapse
Affiliation(s)
- Herbert A Schmid
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 2011; 33:679-91. [PMID: 22019123 DOI: 10.1016/j.biomaterials.2011.09.072] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 09/27/2011] [Indexed: 11/23/2022]
Abstract
Tumor stem cells have emerged as the new targets for anti-cancer therapy, besides tumor cells themselves. To eradicate both breast cancer cells and breast cancer stem cells which can not be eliminated by the conventional chemotherapy, octreotide (Oct)-modified paclitaxel (PTX)-loaded PEG-b-PCL polymeric micelles (Oct-M-PTX) and salinomycin (SAL)-loaded PEG-b-PCL polymeric micelles (M-SAL) were developed and investigated in combination. In this study, Oct that targets somatostatin receptors (SSTR) overexpressed in tumors including breast cancer, was coupled to the PEG end of PEG-b-PCL, and all the micelles were prepared using thin film hydration method. Results showed that the particle size of all the micelles was approximately 25-30 nm, and the encapsulation efficiency was >90%. Quantitative and qualitative analysis demonstrated that Oct facilitates the uptake of micelles in SSTR overexpressed breast cancer MCF-7 cells while free Oct inhibited cellular uptake of Oct-modified micelles, revealing the mechanism of receptor-mediated endocytosis. Breast cancer stem cells (side population cells, SP cells) were sorted from MCF-7 cells and identified with the CD44+/CD24- phenotype. M-SAL was capable of decreasing the proportion of SP cells, and its suppression was more potent in SP cells than that in cancer cells. As compared to PTX-loaded micelles (M-PTX), the inhibition of Oct-M-PTX against MCF-7 cells was stronger while such effect significantly increased when applying Oct-M-PTX in combination with M-SAL. In the MCF-7 xenografts, the combination therapy with Oct-M-PTX plus M-SAL produced the strongest antitumor efficacy, in accord with the combination treatment in vitro. Compared with free SAL, M-SAL was found to be more effective in suppressing breast cancer stem cells in vivo. Thus, this combination therapy may provide a strategy to improve treatment of breast cancers for eradication of breast cancer cells together with breast cancer stem cells.
Collapse
|
17
|
Erchegyi J, Cescato R, Waser B, Rivier JE, Reubi JC. N-imidazolebenzyl-histidine substitution in somatostatin and in its octapeptide analogue modulates receptor selectivity and function. J Med Chem 2011; 54:5981-7. [PMID: 21806016 DOI: 10.1021/jm200307v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite 3 decades of focused chemical, biological, structural, and clinical developments, unusual properties of somatostatin (SRIF, 1) analogues are still being uncovered. Here we report the unexpected functional properties of 1 and the octapeptide cyclo(3-14)H-Cys-Phe-Phe-Trp(8)-Lys-Thr-Phe-Cys-OH (somatostatin numbering; OLT-8, 9) substituted by imBzl-l- or -d-His at position 8. These analogues were tested for their binding affinity to the five human somatostatin receptors (sst(1-5)), as well as for their functional properties (or functionalities) in an sst(3) internalization assay and in an sst(3) luciferase reporter gene assay. While substitution of Trp(8) in somatostatin by imBzl-l- or -d-His(8) results in sst(3) selectivity, substitution of Trp(8) in the octapeptide 9 by imBzl-l- or -d-His(8) results in loss of binding affinity for sst(1,2,4,5) and a radical functional switch from agonist to antagonist.
Collapse
Affiliation(s)
- Judit Erchegyi
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
18
|
Lupp A, Hunder A, Petrich A, Nagel F, Doll C, Schulz S. Reassessment of sst(5) somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinology 2011; 94:255-64. [PMID: 21952553 DOI: 10.1159/000329876] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/31/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The frequent overexpression of somatostatin receptors (sst) in neuroendocrine tumors provides the molecular basis for the diagnostic and therapeutic application of stable somatostatin analogs. Whereas octreotide acts mainly via the sst(2) receptor, the novel pan-somatostatin analog pasireotide exhibits particular high affinity for the sst(5) receptor. To determine whether a patient is a candidate for octreotide or pasireotide therapy, it is important to evaluate the somatostatin receptor status. However, so far highly specific rabbit monoclonal antibodies have been developed for the sst(2) receptor only (clone UMB-1). METHODS Here, we have extensively characterized a novel rabbit monoclonal antibody for the human sst(5) receptor (clone UMB-4). In a comparative immunohistochemical study, the expression of sst(5) and sst(2) receptors was assessed using UMB-4 and UMB-1, respectively. RESULTS Western blot experiments unequivocally demonstrated that UMB-4 selectively detected its cognate sst(5) receptor and did not cross-react with other proteins present in crude tissue homogenates. UMB-4 yielded a highly effective immunostaining of distinct cell populations in formalin-fixed, paraffin-embedded human tissues with a predominance of plasma membrane staining. In the pituitary, sst(5) was present on all growth hormone (GH)- and adrenocorticotropin hormone (ACTH)-producing cells whereas sst(2) was only observed on a subpopulation of GH-positive cells. Consequently, sst(5) was detectable on the majority of GH and ACTH adenomas. In contrast, sst(2) was only seen on GH but not on ACTH adenomas. CONCLUSIONS The rabbit monoclonal antibodies UMB-4 and UMB-1 will facilitate the assessment of the somatostatin receptor status of human tumors during routine histopathological examinations.
Collapse
Affiliation(s)
- Amelie Lupp
- Department of Pharmacology and Toxicology, University Hospital, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Ovadia O, Greenberg S, Laufer B, Gilon C, Hoffman A, Kessler H. Improvement of drug-like properties of peptides: the somatostatin paradigm. Expert Opin Drug Discov 2010; 5:655-71. [DOI: 10.1517/17460441.2010.493935] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Zamora V, Cabanne A, Salanova R, Bestani C, Domenichini E, Marmissolle F, Giacomi N, O'Connor J, Méndez G, Roca E. Immunohistochemical expression of somatostatin receptors in digestive endocrine tumours. Dig Liver Dis 2010; 42:220-5. [PMID: 19819769 DOI: 10.1016/j.dld.2009.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/30/2009] [Accepted: 07/28/2009] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Somatostatin receptors are expressed in a large number of human tumours. The somatostatin receptors types 1-5 expression in a series including 100 gastro-entero-pancreatic endocrine tumours were analysed. METHODS From a prospectively built database of patients with gastro-entero-pancreatic endocrine tumours referred from three institutions, 100 cases with clinical and pathological data were selected. Somatostatin receptors expression by immunohistochemistry with somatostatin receptor types 1-5 antibodies in tissue paraffin sections were studied and correlated with the histological diagnosis according to the WHO classification, location and functional status. RESULTS Of the 100 cases, 67 were gastrointestinal tumours, 25 pancreatic and 8 liver metastasis of unknown origin. Thirty-one of them were functioning tumours: 2 insulinomas, 5 gastrinomas, 1 glucagonoma and 23 carcinoids. Somatostatin receptors expression was observed in 94 tumours. The six negative cases were all non-functioning tumours. Somatostatin receptors 2a and 5 were highly expressed (86 and 62%, respectively), and surprisingly found even in poorly differentiated endocrine carcinomas. Somatostatin receptors expression was less frequent in pancreatic than in gastrointestinal tumours. Well-differentiated neoplasms had a higher density of somatostatin receptors. Only SSTR2a showed membrane staining. CONCLUSIONS Immunohistochemistry revealed that somatostatin receptors were highly expressed in both primary and metastatic gastro-entero-pancreatic endocrine tumours with heterogeneous staining distribution. It proved to be a reliable technique even in small tumour samples.
Collapse
Affiliation(s)
- V Zamora
- Gastroenterology Hospital "C. Bonorino Udaondo", Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gonkowski S, Całka J. Changes in the somatostatin (SOM)-like immunoreactivity within nervous structures of the porcine descending colon under various pathological factors. Exp Mol Pathol 2010; 88:416-23. [PMID: 20138863 DOI: 10.1016/j.yexmp.2010.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
This study reports on changes in the somatostatin-like immunoreactive (SOM-LI) nerve structures of the enteric nervous system (ENS) in the porcine descending colon, caused by chemically driven inflammation, proliferative enteropathy (PE), which is a "natural" inflammation with proliferative changes and nerve injury (axotomy). The distribution pattern of SOM-LI structures was studied using the immunofluorescence technique in the circular muscle layer, the myenteric (MP), outer submucous (OSP) and inner submucous plexuses (ISP) and also in the mucosal layer. Under physiological conditions SOM-LI perikarya have been shown to constitute 1.97+/-0.36%, 2.06+/-0.33% and 4.23+/-0.40% in the MP, OSP and ISP, respectively. Changes in SOM-immunoreactivity depended on the pathological factor and the part of the ENS studied. Numbers of the SOM-LI perikarya amounted 1.81+/-0.30, 1.97+/-0.24 and 11.15+/-0.95 during chemically induced colitis and 3.21+/-0.37%, 4.33+/-0.33% and 4.42+/-0.32% after axotomy in MP, OSP and ISP, respectively. Moreover during PE SOM-positive cell bodies were not observed at all in MP, whereas within OSP and ISP the number of SOM-LI perikarya amounted to 3.34+/-0.36 and 10.92+/-059, respectively. All processes studied resulted in a decrease in the number of SOM-LI nerve fibers in the mucosal layer, whereas within the circular muscle layer chemically induced inflammation and axotomy caused an increase in the number of the SOM-LI nerve fibers contrary to PE, which reduced the number of such fibers. The obtained results suggest that SOM-LI nerve structures of the ENS may participate in various pathological states within the porcine descending colon and their functions probably depend on the type of pathological factor.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Division of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland.
| | | |
Collapse
|
22
|
Panzuto F, Di Fonzo M, Iannicelli E, Sciuto R, Maini CL, Capurso G, Milione M, Cattaruzza MS, Falconi M, David V, Ziparo V, Pederzoli P, Bordi C, Delle Fave G. Long-term clinical outcome of somatostatin analogues for treatment of progressive, metastatic, well-differentiated entero-pancreatic endocrine carcinoma. Ann Oncol 2005; 17:461-6. [PMID: 16364959 DOI: 10.1093/annonc/mdj113] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Knowledge of factors able to predict the clinical outcome of homogenous series of entero-pancreatic endocrine tumours treated with somatostatin analogues is poor. This study was aimed at identifying predictors for efficacy of somatostatin analogues at inhibiting tumour growth and modifying patients' survival during long-term follow-up. PATIENTS AND METHODS 31 patients with entero-pancreatic well-differentiated endocrine carcinoma received long-acting somatostatin analogues. All had progressive, metastatic disease (87% liver metastases, 38.7% distant extra-hepatic metastases). RESULTS Response rate after 6 months of treatment was 45.2% (all disease stabilisation: 27.8% of pancreatic vs. 81.8% of intestinal tumours, P = 0.007). The predictors for non-response were: pancreatic tumour (OR 5.8), no previous surgery (OR 6.7), and the presence of distant extra-hepatic metastases, the latter being also confirmed by multivariate analysis (OR 10.0). Responders maintained stabilisation for 26.5 months, and none died during follow-up. Different survival curves were observed for patients, responding at 6 months compared to non-responders (P = 0.004), 3-year survival rate being 100% and 52.3%, respectively. CONCLUSIONS Distant extra-hepatic metastases are the major predictor of poor efficacy of somatostatin analogues in progressive, metastatic, well-differentiated entero-pancreatic endocrine carcinomas. Patients achieving response after 6 months of treatment, maintain it throughout a long-term follow-up. Non-responders after 6 months of treatment, have a worse survival, and should be considered for alternative treatments.
Collapse
Affiliation(s)
- F Panzuto
- Department of Digestive and Liver Disease, II School of Medicine, University 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nelson LE, Sheridan MA. Regulation of somatostatins and their receptors in fish. Gen Comp Endocrinol 2005; 142:117-33. [PMID: 15862556 DOI: 10.1016/j.ygcen.2004.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/02/2004] [Accepted: 12/13/2004] [Indexed: 01/12/2023]
Abstract
The multifunctional nature of the somatostatin (SS) family of peptides results from a multifaceted signaling system consisting of many forms of SS peptides that bind to a variety of receptor (SSTR) subtypes. Research in fish has contributed important information about the components, function, evolution, and regulation of this system. Somatostatins or mRNAs encoding SSs have been isolated from over 20 species of fish. Peptides and deduced peptides differ in their amino acid chain length and/or composition, and most species of fish possess more than one form of SS. The structural heterogeneity of SSs results from differential processing of the hormone precursor, preprosomatostatin (PPSS), and from the existence of multiple genes that give rise to multiple PPSSs. The PPSS genes appear to have arisen through a series of gene duplication events over the course of vertebrate evolution. The numerous PPSSs of fish are differentially expressed, both in terms of the distribution among tissues and in terms of the relative abundance within a tissue. Accumulated evidence suggests that nutritional state, season/stage of sexual maturation, and many hormones [insulin (INS), glucagon, growth hormone (GH), insulin-like growth factor-I (IGF-I), and 17beta-estradiol (E2)] regulate the synthesis and release of particular SSs. Fish and mammals possess multiple SSTRs; four different SSTRs have been described in fish and several of these occur as isoforms. SSTRs are also wide spread and are differentially expressed, both in terms of distribution of tissues as well as in terms of relative abundance within tissues. The pattern of distribution of SSTRs may underlie tissue-specific responses of SSs. The synthesis of SSTR mRNA and SS-binding capacity are regulated by nutritional state and numerous hormones (INS, GH, IGF-I, and E2). Accumulated evidence suggests the possibility of both tissue- and subtype-specific mechanisms of regulation. In many instances, there appears to be coordinate regulation of PPSS and of SSTR; such regulation may prove important for many processes, including nutrient homeostasis and growth control.
Collapse
Affiliation(s)
- Laura E Nelson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | |
Collapse
|