1
|
Meisaprow P, Aksorn N, Vinayanuwattikun C, Chanvorachote P, Sukprasansap M. Caffeine Induces G0/G1 Cell Cycle Arrest and Inhibits Migration through Integrin αv, β3, and FAK/Akt/c-Myc Signaling Pathway. Molecules 2021; 26:7659. [PMID: 34946741 PMCID: PMC8706725 DOI: 10.3390/molecules26247659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is recognized as a major cause of mortality worldwide owing to its metastatic activity. Given the lack of solid information regarding the possible effects of caffeine, one of the most consumed natural psychoactive substances, on molecular signaling pathways implicated in the aggressive behavior of lung cancer, our study aimed to evaluate the effect and mechanism of caffeine on metastasis-related mechanisms. The results revealed that caffeine treatment at concentrations of 0-500 µM caused no direct cytotoxic effects on NCI-H23 cells. Treatment of cells with caffeine showed good potential to inhibit cell proliferation at 48 h and induced significant cell cycle arrest at the G0/G1 phase. Concerning metastasis, caffeine was shown to reduce filopodia formation, inhibit migration and invasion capability, and reduce the ability of cancer cells to survive and grow in an anchorage-independent manner. Moreover, caffeine could attenuate the formation of 3D tumor spheroids in cancer stem cell (CSC)-enriched populations. With regard to mechanisms, we found that caffeine significantly altered the integrin pattern of the treated cells and caused the downregulation of metastasis-associated integrins, namely, integrins αv and β3. Subsequently, the downstream signals, including protein signaling and transcription factors, namely, phosphorylated focal adhesion kinase (p-FAK), phosphorylated protein kinase B (p-Akt), cell division cycle 42 (Cdc42), and c-Myc, were significantly decreased in caffeine-exposed cells. Taken together, our novel data on caffeine-inhibiting mechanism in relation to metastasis in lung cancer could provide insights into the impact of caffeine intake on human diseases and conditions.
Collapse
Affiliation(s)
- Pichitchai Meisaprow
- Graduate Student in Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | - Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol 2021; 17:937-946. [PMID: 33767387 PMCID: PMC8387313 DOI: 10.1038/s41589-021-00770-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosomal targeting receptor, to degrade extracellular proteins in a cell type-specific manner. We conjugated binders to a tri-GalNAc motif that engages ASGPR to drive downregulation of proteins. Degradation of EGFR by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC comprising a 3.4 kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type restricted protein degradation.
Collapse
|
3
|
Milk Fat Globule-EGF Factor 8 Contributes to Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12020403. [PMID: 32050643 PMCID: PMC7072366 DOI: 10.3390/cancers12020403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is an anti-inflammatory glycoprotein that mediates a wide spectrum of pathophysiological processes. MFG-E8 has been studied as a key regulator of cancer cell invasion, migration, and proliferation in different tissues and organs. However, potential roles of MFG-E8 in the growth and progression of liver cancer have not been investigated to date. Here, we analyzed 33 human hepatocellular carcinoma (HCC) samples and found that levels of MFG-E8 expression were significantly higher in HCC cells than in normal liver tissues. In addition, our in vitro gain-of-function study in three different HCC cell lines revealed that overexpression of MFG-E8 promoted the proliferation and migration of HCC cells, as determined by RT-qPCR, MTT assays, and wound healing analyses. Conversely, an MFG-E8 loss-of function study showed that proliferation capacity was significantly reduced by MFG-E8 knockdown in HCC cells. Additionally, MFG-E8 activity-neutralizing antibodies profoundly inhibited both migration and proliferation of HCC cells, attenuating their tumorigenic properties. These reductions in migration and proliferation were rescued by treatment of HCC cells with recombinant MFG-E8 protein. Furthermore, an in vivo HCC xenograft study showed that the number of proliferating HCC cells and tumor volume/weight were all significantly increased by MFG-E8 overexpression, compared to control mice. These results clearly show that MFG-E8 plays an important role in HCC progression and may provide a basis for future mechanistic studies and new strategies for the treatment of liver cancer.
Collapse
|
4
|
"Hepatocellular carcinoma: A life-threatening disease". Biomed Pharmacother 2016; 84:1679-1688. [PMID: 27823920 DOI: 10.1016/j.biopha.2016.10.078] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
An estimated rise in liver cancer incidence will increase to 95374 new cases by 2020. Hepatocellular Carcinoma (HCC), the most common primary malignant tumour of the liver, is considered to be the third leading cause of all cancer-related deaths and fifth common cancer worldwide. The reported data shows that the rate of HCC incidence in male population is three to four times higher compared with the female population. In the United States, HCV-induced liver cancer is increasing very fast because of the lack of proper treatment option. There are various treatment strategies available for HCC like liver transplantation, resection, ablation, embolization and chemotherapy still the prognosis is destitute. If the patient is eligible, liver transplantation is the only therapeutic option that may give around 90% survival rate, but the scarcity of liver donor limits its broad applicability. A sudden address is necessary to develop specific drugs, personalized medicine, for HCC.
Collapse
|
5
|
Liang J, Wu W, Lai D, Li J, Fang C. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:369-83. [PMID: 25621942 DOI: 10.1080/09205063.2015.1012034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.
Collapse
Affiliation(s)
- Ju Liang
- a Chemical Engineering and Pharmaceutics School , Henan University of Science and Technology , Luoyang 471023 , PR China
| | | | | | | | | |
Collapse
|
6
|
Xu ZZ, Xiu P, Lv JW, Wang FH, Dong XF, Liu F, Li T, Li J. Integrin αvβ3 is required for cathepsin B-induced hepatocellular carcinoma progression. Mol Med Rep 2014; 11:3499-504. [PMID: 25572981 DOI: 10.3892/mmr.2014.3140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/14/2014] [Indexed: 11/05/2022] Open
Abstract
The cysteine protease cathepsin B (Cat B) is important in the progression of tumor cells, however, the function and molecular mechanisms of Cat B in hepatocellular carcinoma (HCC) remain to be elucidated. Our previous study demonstrated that integrin αvβ3 regulated the biological behavior of HCC. The present study demonstrated that Cat B was also important in cell proliferation and apoptosis in HCC. Notably, Cat B was observed to activate the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway to promote HCC proliferation. Furthermore, inhibition of integrin αvβ3 significantly prevented Cat B‑induced activation of PI3K/Akt and the progression of HCC. Thus, the results of the present study suggested the presence of a Cat B/integrin αvβ3/PI3K/Akt axis in the regulation of the progression of HCC.
Collapse
Affiliation(s)
- Zong-Zhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju-Wei Lv
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fu-Hai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiao-Feng Dong
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
7
|
Pan Y, Wu H, Liu S, Zhou X, Yin H, Li B, Zhang Y. Potential Usefulness of Baculovirus-Mediated Sodium-Iodide Symporter Reporter Gene as Non-Invasively Gene Therapy Monitoring in Liver Cancer Cells: An In Vitro Evaluation. Technol Cancer Res Treat 2014; 13:139-48. [PMID: 23919394 DOI: 10.7785/tcrt.2012.500368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary liver cancer has one of the highest mortality rates of all cancers, and the main current treatments have a poor prognosis. This study aims to examine the efficiency of baculovirus vectors for transducing target gene into liver cancer cells and to evaluate the feasibility of using baculovirus vectors to deliver the sodium-iodide symporter (NIS) gene as a reporter gene through co-vector administration approach to monitor the expression of the target therapeutic gene in liver cancer gene therapy. We constructed (green fluorescent protein) GFP- and NIS-expressing baculovirus vectors (Bac-GFP and Bac-NIS), and measured the baculovirus transduction efficiency in HepG2 cells and other tumor cells (A549, SW1116 and 8505C), and it showed that the transduction efficiency and target gene expression level rose with increasing viral multiplicity of infection (MOI) in HepG2 cells, and HepG2 cells had a significantly higher transduction efficiency (60.8% at MOI = 200) than other tumor cells. Moreover, the baculovirus transduction was not cytotoxic to HepG2 cells at a higher MOI (MOI = 400). We also performed dynamic iodide uptake trials, and found that Bac-NIS-transduced HepG2 cells exhibited efficient iodide uptake which could be inhibited by sodium perchlorate (NaClO4). And we measured the correlation of fluorescent intensities and 125 I uptake amount in HepG2 cells after co-vector administration with Bac-NIS and Bac-GFP at different MOIs, and found a high correlation coefficient ( r2 = 0.8447), which provides a good basis for successfully evaluating the feasibility of baculovirus-mediated NIS reporter gene monitoring target gene expression in liver cancer therapy. Therefore, this study indicates that baculovirus vector is a potential vehicle for delivering therapeutic genes in studying liver cancer cells. And it is feasible to use a baculovirus vector to deliver NIS gene as a reporter gene to monitor the expression of target genes. It therefore provides an effective approach and a good basis for future baculovirus-mediated therapeutic gene delivering or therapeutic gene expression monitoring in liver cancer cells studies.
Collapse
Affiliation(s)
- Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Haifei Wu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Shuai Liu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Hongyan Yin
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197, Rui Jin 2nd Road, Shanghai 200025, China
| |
Collapse
|
8
|
Yang SD, Ma L, Gu TX, Ding WY, Zhang F, Shen Y, Zhang YZ, Yang DL, Zhang D, Sun YP, Song YL. 17β-Estradiol protects against apoptosis induced by levofloxacin in rat nucleus pulposus cells by upregulating integrin α2β1. Apoptosis 2014; 19:789-800. [DOI: 10.1007/s10495-014-0965-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Hegde S, Raghavan S. A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. ACTA ACUST UNITED AC 2013; 20:155-69. [DOI: 10.3109/15419061.2013.854334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abstract
Metastasis is a combination of biological events that makes the difference between cancer and other diseases. Metastasis requires flow of erroneous but precisely coordinated basic cellular activities like cell migration-invasion, cell survival-apoptosis, cell proliferation, etc. All of these processes require efficient regulation of cell attachment and detachment, which recruit integrin receptors in this flow of events. World literatures show several aspects of interrelation of integrins and metastasis. Integrin molecules are being used as prime target to battle metastasis. In this review we are collating the observations showing importance of integrin biology in regulation of metastasis and the strategies where integrin receptors are being used as targets to regulate metastasis.
Collapse
Affiliation(s)
- Kirat Kumar Ganguly
- Department of Receptor Biology & Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | |
Collapse
|
11
|
Xiu P, Dong X, Dong X, Xu Z, Zhu H, Liu F, Wei Z, Zhai B, Kanwar JR, Jiang H, Li J, Sun X. Secretory clusterin contributes to oxaliplatin resistance by activating Akt pathway in hepatocellular carcinoma. Cancer Sci 2013; 104:375-82. [PMID: 23279642 DOI: 10.1111/cas.12088] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 12/30/2022] Open
Abstract
Secretory clusterin (sCLU) is expressed in numerous cancers and is associated with the resistance to chemotherapy. However, the role of sCLU in the resistance of hepatocellular carcinoma (HCC) to oxaliplatin (OXA), a recently used third-generation platinum agent, remains unclear. The stable transfectants that are depleted of or overexpress sCLU and OXA-resistant cells were generated using human HCC cells. Overexpression of sCLU abrogated OXA-induced inhibition of cell growth and cell apoptosis, but depletion of sCLU synergized with OXA to inhibit cell growth and enhance cell apoptosis, by regulating proteins involved in mitochondrial apoptosis pathways, such as Bcl-2, Bax, Bcl-xL and caspase-9, and affecting phosphorylation of Akt and GSK-3β. Overexpression of sCLU in either OXA-resistant cells or stable transfectants that overexpress sCLU significantly increased phosphorylated Akt. However, specific inhibition of Akt enhanced sensitivity of sCLU-overexpressing cells to OXA, but had no effect on sCLU expression, suggesting that the regulatory effects between sCLU and pAkt may be in a one-way manner in HCC cells. The expression levels of sCLU affected the therapeutic efficacy of OXA to treat HCC tumors established in immunodeficiency mice. The results have demonstrated that sCLU contributes to OXA resistance by activating Akt pathway, indicating that sCLU may be a novel molecular target for overcoming OXA resistance in HCC.
Collapse
Affiliation(s)
- Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ni RS, Shen X, Qian X, Yu C, Wu H, Gao X. Detection of differentially expressed genes and association with clinicopathological features in laryngeal squamous cell carcinoma. Oncol Lett 2012; 4:1354-1360. [PMID: 23226807 DOI: 10.3892/ol.2012.920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/03/2012] [Indexed: 01/20/2023] Open
Abstract
Head and neck cancer is a significant health problem worldwide. Early detection and prediction of prognosis will improve patient survival and quality of life. The aim of this study was to identify genes differentially expressed between laryngeal cancer and the corresponding normal tissues as potential biomarkers. A total of 36 patients with laryngeal squamous cell carcinoma were recruited. Four of these cases were randomly selected for cDNA microarray analysis of the entire genome. Using semi-quantitative RT-PCR and western blot analysis, the differential expression of genes and their protein products, respectively, between laryngeal cancer tissues and corresponding adjacent normal tissues was verified in the remaining 32 cases. The expression levels of these genes and proteins were investigated for associations with clinicopathological parameters taken from patient data. The cDNA microarray analysis identified 349 differentially expressed genes between tumor and normal tissues, 112 of which were upregulated and 237 were downregulated in tumors. Seven genes and their protein products were then selected for validation using RT-PCR and western blot analysis, respectively. The data demonstrated that the expression of SENP1, CD109, CKS2, LAMA3, ITGAV and ITGB8 was increased, while LAMA2 was downregulated in laryngeal cancer compared with the corresponding normal tissues. Associations between the expression of these genes and clinicopathological data from the patients were also established, including age, tumor classification, stage, differentiation and lymph node metastasis. Our current study provides the first evidence that these seven genes may be differentially expressed in laryngeal squamous cell carcinoma and also associated with clinicopathological data. Future study is required to further confirm whether detection of their expression can be used as biomarkers for prediction of patient survival or potential treatment targets.
Collapse
Affiliation(s)
- Rong Sheng Ni
- Department of Otorhinolaryngology Head and Neck Surgery, BenQ Medical Center, Nanjing Medical University, Nanjing 210019
| | | | | | | | | | | |
Collapse
|
13
|
Targeting αV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model. J Neurooncol 2012; 110:27-36. [PMID: 22842979 DOI: 10.1007/s11060-012-0942-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/13/2012] [Indexed: 01/22/2023]
Abstract
Brain metastases commonly occur in patients with breast, lung and melanoma systemic cancers. The anti-α(V) integrin monoclonal antibody intetumumab binds cell surface proteins important for adhesion, invasion and angiogenesis in the metastatic cascade. The objective of this study was to investigate the anti-metastatic effect of intetumumab in a hematogenous breast cancer brain metastasis model. Female nude rats received intra-carotid infusion of human brain-seeking metastatic breast cancer cells (231BR-HER2) and were randomly assigned into four groups: (1) control; (2) intetumumab mixed with cells in vitro 5 min before infusion without further treatment; (3) intetumumab intravenously 4 h before and weekly after cell infusion; (4) intetumumab intravenously weekly starting 7 days after cell infusion. Brain metastases were detected by magnetic resonance imaging (MRI) and immunohistochemistry. Comparisons were made using the Kruskal-Wallis test and Dunnett's test. Survival times were estimated using Kaplan-Meier analysis. All control rats with brain tissue available for histology (9 of 11 rats) developed multiple brain metastases (median = 14). Intetumumab treatment either in vitro prior to cell infusion or intravenous before or after cell infusion prevented metastasis formation on MRI and decreased the number of metastases on histology (median = 2, p = 0.0055), including 30 % of animals without detectable tumors at the end of the study. The overall survival was improved by intetumumab compared to controls (median 77+ vs. 52 days, p = 0.0277). Our results suggest that breast cancer patients at risk of metastases might benefit from early intetumumab treatment.
Collapse
|
14
|
Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of TGF-β1-Induced Pro-Apoptotic Signaling by Growth Factor Receptors and Extracellular Matrix Receptor Integrins in the Liver. Front Physiol 2011; 2:78. [PMID: 22028694 PMCID: PMC3199809 DOI: 10.3389/fphys.2011.00078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/11/2011] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) often arises from chronically diseased livers. Persistent liver inflammation causes the accumulation of excessive extracellular matrix (ECM) proteins and impairs the liver function, finally leading to the development of HCC. A pleiotropic cytokine, transforming growth factor (TGF)-β1, plays critical roles throughout the process of fibrogenesis and hepatocarcinogenesis. In the liver, TGF-β1 inhibits the proliferation of hepatocytes and stimulates the production of ECM from hepatic stellate cells (HSCs) to maintain tissue homeostasis. During disease progression, both growth factors/cytokines and the ECM alter the TGF-β1 signals by modifying the phosphorylation of Smad proteins at their C-terminal and linker regions. TGF-β1 stimulates the expression of integrins, cellular receptors for ECM, along with an increase in ECM accumulation. The activation of integrins by the ECM modulates the response to TGF-β1 in hepatic cells, resulting in their resistance to TGF-β1-induced growth suppression in hepatocytes and the sustained production of ECM proteins in activated HSCs/myofibroblasts. Both growth factor receptors and integrins modify the expression and/or functions of the downstream effectors of TGF-β1, resulting in the escape of hepatocytes from TGF-β1-induced apoptosis. Recent studies have revealed that the alterations of Smad phosphorylation that occur as the results of the crosstalk between TGF-β1, growth factors and integrins could change the nature of TGF-β1 signals from tumor suppression to promotion. Therefore, the modification of Smad phosphorylation could be an attractive target for the prevention and/or treatment of HCC.
Collapse
Affiliation(s)
- Iwata Ozaki
- Saga Medical School, Health Administration Center Saga, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
INTRODUCTION Integrins, which are heterodimeric membrane glycoproteins, consist of a family of cell-surface receptors mediating cell-matrix and cell-cell adhesion. Analysis of tumor-associated integrins has revealed an important relationship between integrins and tumor development, bringing new insights into integrin-based cancer therapies. Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide and integrins appeal to be a novel group of potential therapeutic targets for HCC. AREAS COVERED This review summarizes the current knowledge of integrins involved in HCC and the potential of integrin-targeted drugs in HCC therapy. A brief introduction on the structure, biological function and regulatory mechanism of integrins is given. The distinct expression patterns and biological functions of HCC-associated integrins are described. Finally, the current situation of integrin-based therapies in HCC and other tumor types are extensively discussed in the light of their implications in preclinical and clinical trials. EXPERT OPINION To date, increasing numbers of integrin-targeted drugs are undergoing development and they exhibit diverse effects in cancer clinical trials. Tumor heterogeneity should be emphasized in developing effective integrin-targeted drugs specific for HCC. A better understanding of how integrins cooperatively function in HCC will assist in designing more successful integrin-targeted therapeutic drugs and corresponding approaches.
Collapse
Affiliation(s)
- Yanhua Wu
- Fudan University, Institute of Genetics, State Key Laboratory of Genetic Engineering, 220 Handan Road, Shanghai, 200433, P. R. China
| | | | | | | |
Collapse
|
16
|
Abstract
The integrin family of cell adhesion receptors regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumours. The importance of integrins in several cell types that affect tumour progression has made them an appealing target for cancer therapy. Integrin antagonists, including the alphavbeta3 and alphavbeta5 inhibitor cilengitide, have shown encouraging activity in Phase II clinical trials and cilengitide is currently being tested in a Phase III trial in patients with glioblastoma. These exciting clinical developments emphasize the need to identify how integrin antagonists influence the tumour and its microenvironment.
Collapse
Affiliation(s)
- Jay S Desgrosellier
- Department of Pathology, Moores University of California at San Diego Cancer Center, La Jolla, 92093-0803, United States
| | | |
Collapse
|
17
|
Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, Mueller MM, Zentgraf H, Eisenhut M, Addadi Y, Neeman M, Semmler W. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology 2009; 253:462-9. [PMID: 19789239 DOI: 10.1148/radiol.2532081815] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the biologic effect of arginine-glycine-aspartic acid (RGD)-labeled ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-USPIO) on human umbilical vein endothelial cells (HUVECs), ovarian carcinoma (MLS) cells, and glioblastoma (U87MG) cells and on U87MG xenografts in vivo. MATERIALS AND METHODS All experiments were approved by the governmental review committee on animal care.USPIOs were coated with integrin-specific (RGD) or unspecific (arginine-alanine-aspartic acid [RAD]) peptides. USPIO uptake in HUVECs, MLS cells, and U87MG cells and in U87MG tumor xenografts was determined with T2 magnetic resonance (MR) relaxometry in 16 nude mice. Cells and tumors were characterized by using immunofluorescence microscopy. Trypan blue staining and lactate dehydrogenase assay were used to assess cytotoxicity. Statistical evaluation was performed by using a Mann-Whitney test or a linear mixed model with random intercept for the comparison of data from different experiments. Post hoc pairwise comparisons were adjusted according to a Tukey test. RESULTS HUVECs and MLS cells internalized RGD-USPIOs significantly more than unspecific probes. Controversially, U87MG cells accumulated RGD-USPIOs to a lesser extent than USPIO. Furthermore, only in U87MG cells, free RGD and alpha(v)beta(3) integrin-blocking antibodies strongly reduced endocytosis of nonspecific USPIOs. This was accompanied by a loss of cadherin-dependent intercellular contacts, which could not be attributed to cell damage. In U87MG tumors, RGD-USPIO accumulated exclusively at the neovasculature but not within tumor cells. The vascular accumulation of RGD-USPIO caused significantly higher changes of the R2 relaxation rate of tumors than observed for USPIO. CONCLUSION In glioma cells with unstable intercellular contacts, inhibition of alpha(v)beta(3) integrins by antibodies and RGD and RGD-USPIO disintegrated intercellular contacts and reduced endocytotic activity, illustrating the risk of inducing biologic effects by using molecular MR probes.
Collapse
Affiliation(s)
- Fabian Kiessling
- Department of Experimental Molecular Imaging, German Cancer Research Center, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tucci M, De Palma R, Lombardi L, Rodolico G, Berrino L, Dammacco F, Silvestris F. beta(3) Integrin subunit mediates the bone-resorbing function exerted by cultured myeloma plasma cells. Cancer Res 2009; 69:6738-46. [PMID: 19654300 DOI: 10.1158/0008-5472.can-09-0949] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
alpha(v)beta(3) integrin was investigated in multiple myeloma in relation to the in vitro osteoclast-like activity of malignant plasma cells. Myeloma cells from patients with skeleton involvement overexpressed alpha(v)beta(3) and produced erosion pits on bone substrates, whereas this effect was not observed by cells from patients with no evidence of bone disease. We therefore explored the alpha(v)beta(3) transcriptional pathway in the bone-resorbing cells. Silencing of beta(3) chain abrogated the ability to produce erosion pits and extracellular signal-regulated kinase 1/2 phosphorylation resulting in the defective function of cFos and nuclear factor activator T cell 1, the terminal effectors of osteoclast activation. A similar defect occurred in constitutively beta(3)-deficient cells from patients with no skeleton disease. Microarray gene analysis of beta(3)(+) myeloma cells showed that several osteoclast-related genes were up-regulated. Their functions include the activation of receptor pathways beta(3) and c-fms that regulate several osteoclast functions. These data emphasize the postulated role of myeloma cells in multiple myeloma bone disease and suggest that their osteoclast-like activity is regulated, at least in vitro, by the beta(3) subunit of the integrin.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Internal Medicine and Clinical Oncology, University of Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee SK, Kim MH, Cheong JY, Cho SW, Yang SJ, Kwack K. Integrin alpha V polymorphisms and haplotypes in a Korean population are associated with susceptibility to chronic hepatitis and hepatocellular carcinoma. Liver Int 2009; 29:187-95. [PMID: 18694400 DOI: 10.1111/j.1478-3231.2008.01843.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Integrins are cell surface receptors for extracellular matrix (ECM) proteins that initiate signalling pathways that modulate proliferation, survival, invasion or metastasis. Consequently, integrins are potential targets for the treatment of cancer. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in integrin alpha(V) (ITGAV) in a Korean population were associated with chronic hepatitis B virus (HBV) infection and HBV-infected hepatocellular carcinoma (HCC). PATIENTS AND METHODS Thirteen ITGAV SNPs in 111 cases of chronic HBV infection, 86 cases of HBV-infected HCC and 107 cases of acute self-limited HBV infection were genotyped using Illumina's Sentrix array matrix (SAM) chip. RESULTS The ITGAV intron SNPs rs9333289 and rs11685758, the 3'-untranslated region SNP rs1839123 and haplotype 3 (T-T-A) were associated with enhanced susceptibility to HBV-infected HCC (OR=1.75-2.42; P=0.02-0.05), while the intron SNP rs2290083 was associated with both chronic infection and HBV-infected HCC (OR=1.73-2.01; P=0.01-0.04). In addition, both rs2290083 and ht1 (C-C-G) were associated with the age at which chronic infection occurred, as determined by Cox relative hazard analysis (RH=1.39-1.62, P=0.04-0.01) CONCLUSION ITGAV SNPs and haplotypes may be genetic factors that increase the susceptibility of Koreans to chronic HBV infection and HBV-infected HCC.
Collapse
Affiliation(s)
- Seung Ku Lee
- Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University, SeongNam, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Zou X, Qiao H, Jiang X, Dong X, Jiang H, Sun X. Downregulation of developmentally regulated endothelial cell locus-1 inhibits the growth of colon cancer. J Biomed Sci 2008; 16:33. [PMID: 19292890 PMCID: PMC2666667 DOI: 10.1186/1423-0127-16-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/16/2008] [Indexed: 11/13/2022] Open
Abstract
Developmentally regulated endothelial cell locus-1 (Del1) is an embryonic angiogenic factor expressed in early embryonic endothelial cells, but recently has been found to be expressed in some forms of cancers including colon and breast cancers, and melanoma, and human cancer cell lines. Overexpression of Del1 accelerates tumor growth by enhancing vascular formation, implying Del1 may be a potential target for anti-angiogenic cancer therapy. The study aims to investigate whether downregulation of Del1 could inhibit the growth of tumors established in nude Balb/c mice by subcutaneous implantation of human LS-174T colon cancer cells. The shRNA expression vectors targeting human Del1, and vascular endothelial growth factor (VEGF) were constructed. Gene transfection of Del1-shRNA downregulated expression of Del1 in LS-174T cells in vivo and in vitro, but did not alter the proliferative or survival properties of cells in vitro. Gene transfection of VEGF-shRNA downregulated expression of both VEGF and Del1 in LS-174T cells in vivo and in vitro. Both Del1-shRNA and VEGF-shRNA gene therapies exhibited anti-tumor activities and they also showed a synergistic effect in suppressing growth of colon tumors by anti-angiogenesis and anti-proliferation. Although further investigation to clarify the mechanisms explaining the role of Del1 in tumor growth, and the interaction between VEGF and Del1, is required, the results indicate that downregulation of Del1 presents a potent therapeutic strategy to combat colon cancer.
Collapse
Affiliation(s)
- Xiaolong Zou
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Clinical College of Harbin Medical University, Harbin 150001, PR China.
| | | | | | | | | | | |
Collapse
|
21
|
Zou X, Qiao H, Jiang X, Dong X, Jiang H, Sun X. Downregulation of developmentally regulated endothelial cell locus-1 inhibits the growth of colon cancer. J Biomed Sci 2008. [DOI: 10.1007/s11373-008-9284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Liu F, Wang P, Jiang X, Tan G, Qiao H, Jiang H, Krissansen GW, Sun X. Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci 2008; 99:2055-61. [PMID: 19016766 PMCID: PMC11159667 DOI: 10.1111/j.1349-7006.2008.00905.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/09/2008] [Accepted: 06/17/2008] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, is resistant to anticancer drugs. Hypoxia is a major cause of tumor resistance to chemotherapy, and hypoxia-inducible factor (HIF)-1 is a key transcription factor in hypoxic responses. We have previously demonstrated that gene transfer of an antisense HIF-1alpha expression vector downregulates expression of HIF-1alpha and vascular endothelial growth factor (VEGF), and synergizes with immunotherapy to eradicate lymphomas. The aim of the present study was to determine whether gene transfer of antisense HIF-1alpha could enhance the therapeutic efficacy of doxorubicin to combat HCC. Both antisense HIF-1alpha therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, tumor angiogenesis, and cell proliferation, and induced tumor cell apoptosis. The combination therapy with antisense HIF-1alpha and doxorubicin was more effective in suppressing tumor growth, angiogenesis, and cell proliferation, and inducing cell apoptosis than the respective monotherapies. Gene transfer of antisense HIF-1alpha downregulated the expression of both HIF-1alpha and VEGF, whereas doxorubicin only downregulated VEGF expression. Antisense HIF-1alpha and doxorubicin synergized to downregulate VEGF expression. Both antisense HIF-1alpha and doxorubicin inhibited expression of proliferating cell nuclear antigen, and combined to exert even stronger inhibition of proliferating cell nuclear antigen expression. Antisense HIF-1alpha therapy warrants investigation as a therapeutic strategy to enhance the efficacy of doxorubicin for treating HCC.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antisense Elements (Genetics)/genetics
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Transfer Techniques
- Genetic Therapy/methods
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use
- Immunohistochemistry
- Ki-67 Antigen/metabolism
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/prevention & control
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Proliferating Cell Nuclear Antigen/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Usechak P, Gates A, Webster CR. Activation of focal adhesion kinase and JNK contributes to the extracellular matrix and cAMP-GEF mediated survival from bile acid induced apoptosis in rat hepatocytes. J Hepatol 2008; 49:251-61. [PMID: 18550202 PMCID: PMC2585364 DOI: 10.1016/j.jhep.2008.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Adherence to an extracellular matrix (ECM) rescues hepatocytes from apoptosis, but how hepatocytes adhered to different ECM and respond to apoptotic and cytoprotective stimuli is unknown. METHODS Rat hepatocytes were plated on type 1 collagen (CI), laminin (LM) or polylysine (PL) and the amount of apoptosis induced by glycochenodeoxycholate (GCDC), deoxycholate (DCA), Fas ligand or serum withdrawal was determined by Hoechst staining. The response to cytoprotection by cAMP-guanine exchange factor (cAMP-GEF) activation was determined. Kinase activation was determined by immunoblotting with phosphospecific antibodies. RESULTS Hepatocytes on LM and PL had more apoptosis in response to all apoptotic stimuli. GCDC increased c-jun-N-terminal kinase (JNK) phosphorylation 2-fold in hepatocytes on CI, but 15- and 30-fold in hepatocytes on PL or LM. SP-600125, a JNK inhibitor, prevented LM and PL potentiation of bile acid apoptosis. GCDC induced dephosphorylation of focal adhesion kinase (FAK) was prevented by cAMP-GEF activation. Cytochalasin B which decreased FAK phosphorylation prevented cAMP-GEF cytoprotection. CONCLUSIONS JNK activation augments apoptosis in hepatocytes plated on PL and LM. Decreased FAK phosphorylation as seen in cells treated with bile acids or attached to PL and LM promotes hepatocyte apoptosis.
Collapse
Affiliation(s)
- Paul Usechak
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01539, USA
| | | | | |
Collapse
|
24
|
Lu X, Lu D, Scully M, Kakkar V. The Role of Integrins in Cancer and the Development of Anti-Integrin Therapeutic Agents for Cancer Therapy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0800200003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integrins have been reported to mediate cell survival, proliferation, differentiation, and migration programs. For this reason, the past few years have seen an increased interest in the implications of integrin receptors in cancer biology and tumor cell aggression. This review considers the potential role of integrins in cancer and also addresses why integrins are present attractive targets for drug design. It discusses of the several properties of the integrin-based chemotherapeutic agents currently under consideration clinically and provides an insight into cancer drug development using integrin as a target.
Collapse
Affiliation(s)
- Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Dong Lu
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, U.K
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| |
Collapse
|
25
|
Integrin activation and viral infection. Virol Sin 2008. [DOI: 10.1007/s12250-008-2886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Liu F, Tan G, Li J, Dong X, Krissansen GW, Sun X. Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice. Cancer Sci 2007; 98:1381-7. [PMID: 17627616 PMCID: PMC11160007 DOI: 10.1111/j.1349-7006.2007.00542.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and is chemoresistant to anticancer drugs. Anti-angiogenic therapy has been shown to enhance the efficacy of chemotherapy to treat solid tumors. The aim of the present study was to determine whether endostatin, a potent antiangiogenic agent, could enhance the efficacy of doxorubicin to combat HCC. An endostatin expression plasmid was constructed and its expression in vitro and in vivo was detected after gene transfer. Recombinant endostatin inhibited angiogenesis in the chorioallantoic membrane assay, and showed synergistic effects with doxorubicin in inhibiting the in vitro proliferation of endothelial cells, but not that of tumor cells. Both endostatin gene therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and tumor angiogenesis. Combination therapy with endostatin gene therapy and doxorubicin showed a stronger effect in suppressing tumor growth, and tumor angiogenesis, than the respective monotherapies. Gene transfer of endostatin down-regulated the expression of both hypoxia-inducible factor-1alpha and vascular endothelial growth factor (VEGF), whereas doxorubicin only down-regulated VEGF expression. Endostatin and doxorubicin synergized to down-regulate VEGF expression. Endostatin and doxorubicin combination therapy warrants investigation as a therapeutic strategy to combat HCC.
Collapse
Affiliation(s)
- Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
27
|
Li J, Dong X, Xu Z, Jiang X, Jiang H, Krissansen GW, Sun X. Endostatin gene therapy enhances the efficacy of paclitaxel to suppress breast cancers and metastases in mice. J Biomed Sci 2007; 15:99-109. [PMID: 17705027 DOI: 10.1007/s11373-007-9201-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/01/2007] [Indexed: 01/20/2023] Open
Abstract
Chemotherapy combined with antiangiogenic therapy is more effective than chemotherapy alone. The aim of this study was to investigate whether endostatin, a potent anti-angiogenic agent, could enhance the efficacy of paclitaxel to combat breast cancer. An expression plasmid encoding mouse endostatin (End-pcDNA3.1) was constructed, which produced intense expression of endostatin and inhibited angiogenesis in the chorioallantoic membrane assay. 4T1 breast tumors were established in BALB/c mice by subcutaneous injection of 1 x 10(5) 4T1 cells. The End-pcDNA3.1 plasmid diluted in the transfection reagent FuGENE was injected into the tumors (around 100 mm(2)), and paclitaxel was injected i.p. into the mice. Endostatin gene therapy synergized with paclitaxel in suppressing the growth of 4T1 tumors and their metastasis to the lung and liver. Both endostatin and paclitaxel inhibited tumor angiogenesis and induced cell apoptosis. Despite the finding that endostatin was superior to paclitaxel at inhibiting tumor angiogenesis, paclitaxel was nevertheless more effective at inducing tumor apoptosis. The combination of paclitaxel and endostatin was more effective in suppressing tumor growth, metastases, angiogenesis, and inducing apoptosis than the respective monotherapies. The combinational therapy with endostatin and paclitaxel warrants future investigation as a therapeutic strategy to combat breast cancer.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | | | | | | | | | | | | |
Collapse
|