1
|
Sharma B, Twelker K, Nguyen C, Ellis S, Bhatia ND, Kuschner Z, Agriantonis A, Agriantonis G, Arnold M, Dave J, Mestre J, Shafaee Z, Arora S, Ghanta H, Whittington J. Bile Acids in Pancreatic Carcinogenesis. Metabolites 2024; 14:348. [PMID: 39057671 PMCID: PMC11278541 DOI: 10.3390/metabo14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic β-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Scott Ellis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Andrew Agriantonis
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Monique Arnold
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jasmine Dave
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zahra Shafaee
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Shalini Arora
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Hima Ghanta
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| |
Collapse
|
2
|
A risk prediction tool for individuals with a family history of breast, ovarian, or pancreatic cancer: BRCAPANCPRO. Br J Cancer 2021; 125:1712-1717. [PMID: 34703010 DOI: 10.1038/s41416-021-01580-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Identifying families with an underlying inherited cancer predisposition is a major goal of cancer prevention efforts. Mendelian risk models have been developed to better predict the risk associated with a pathogenic variant of developing breast/ovarian cancer (with BRCAPRO) and the risk of developing pancreatic cancer (PANCPRO). Given that pathogenic variants involving BRCA2 and BRCA1 predispose to all three of these cancers, we developed a joint risk model to capture shared susceptibility. METHODS We expanded the existing framework for PANCPRO and BRCAPRO to jointly model risk of pancreatic, breast, and ovarian cancer and validated this new model, BRCAPANCPRO on three data sets each reflecting the common target populations. RESULTS BRCAPANCPRO outperformed the prior BRCAPRO and PANCPRO models and yielded good discrimination for differentiating BRCA1 and BRCA2 carriers from non-carriers (AUCs 0.79, 95% CI: 0.73-0.84 and 0.70, 95% CI: 0.60-0.80) in families seen in high-risk clinics and pancreatic cancer family registries, respectively. In addition, BRCAPANCPRO was reasonably well calibrated for predicting future risk of pancreatic cancer (observed-to-expected (O/E) ratio = 0.81 [0.69, 0.94]). DISCUSSION The BRCAPANCPRO model provides improved risk assessment over our previous risk models, particularly for pedigrees with a co-occurrence of pancreatic cancer and breast and/or ovarian cancer.
Collapse
|
3
|
Thompson ED, Roberts NJ, Wood LD, Eshleman JR, Goggins MG, Kern SE, Klein AP, Hruban RH. The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Mod Pathol 2020; 33:2544-2563. [PMID: 32704031 PMCID: PMC8375585 DOI: 10.1038/s41379-020-0629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The publication of the "Pan-Cancer Atlas" by the Pan-Cancer Analysis of Whole Genomes Consortium, a partnership formed by The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), provides a wonderful opportunity to reflect on where we stand in our understanding of the genetics of pancreatic cancer, as well as on the opportunities to translate this understanding to patient care. From germline variants that predispose to the development of pancreatic cancer, to somatic mutations that are therapeutically targetable, genetics is now providing hope, where there once was no hope, for those diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott E Kern
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Capurso G, Paiella S, Carrara S, Butturini G, Secchettin E, Frulloni L, Zerbi A, Falconi M. Italian registry of families at risk of pancreatic cancer: AISP Familial Pancreatic Cancer Study Group. Dig Liver Dis 2020; 52:1126-1130. [PMID: 32819857 DOI: 10.1016/j.dld.2020.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the main causes of cancer-related death worldwide, with a survival rate around 9%. In Italy 13,500 new cases of pancreatic cancer occurred in 2019. It is estimated that at least 5% have a hereditary background. Surveillance is advisable for healthy individuals with specific genetic syndromes with or without family history of pancreatic cancer or members of families with multiple cases of pancreatic cancer, irrespective of genetic syndromes. In 2010 the Italian Association for the Study of the Pancreas (AISP) defined criteria to include individuals in such surveillance programs with the first-round results published in 2019. In order to include other categories at high-risk and increase the diagnostic yield of surveillance, these criteria have recently been modified. The present position paper presents the updated criteria of the Italian Registry of Families at Risk of Pancreatic Cancer (IRFARPC) with their diagnostic yield calculation. Also, AISP priority projects concerning: (a) increasing awareness of citizens and primary care physicians through a dedicated App; (b) increasing access to germline testing to personalize surveillance; (c) measuring psychological impact of surveillance; (d) investigating the role of risk-modifiers and (e) evaluating the cost-effectiveness and ability to save lives of the program are briefly presented.
Collapse
Affiliation(s)
- Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy.
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Silvia Carrara
- Digestive Endoscopy Unit(,) Division of Gastroenterology, Humanitas Research Hospital, IRCCS, Rozzano, MI, Italy
| | | | - Erica Secchettin
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Luca Frulloni
- Gastroenterology and Digestive Endoscopy Unit, The Pancreas Institute, Department of Medicine, G.B. Rossi University Hospital, Verona, Italy
| | - Alessandro Zerbi
- Pancreatic Surgery, Humanitas Clinical and Research Center-IRCCS, Rozzano MI, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele MI, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Vita-Salute University, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Università. Vita-Salute, Milan, Italy
| |
Collapse
|
5
|
Dwarte T, McKay S, Johns A, Tucker K, Spigelman AD, Williams D, Stoita A. Genetic counselling and personalised risk assessment in the Australian pancreatic cancer screening program. Hered Cancer Clin Pract 2019; 17:30. [PMID: 31666883 PMCID: PMC6813120 DOI: 10.1186/s13053-019-0129-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic cancer (PC) is an aggressive disease with a dismal 5-year survival rate. Surveillance of high-risk individuals is hoped to improve survival outcomes by detection of precursor lesions or early-stage malignancy. Methods Since 2011, a national high-risk cohort recruited through St Vincent’s Hospital, Sydney, has undergone prospective PC screening incorporating annual endoscopic ultrasound, formal genetic counselling and mutation analysis as appropriate. PancPRO, a Bayesian PC risk assessment model, was used to estimate 5-year and lifetime PC risks for familial pancreatic cancer (FPC) participants and this was compared to their perceived chance of pancreatic and other cancers. Genetic counselling guidelines were developed to improve consistency. Follow-up questionnaires were used to assess the role of genetic counselling and testing. Results We describe the Australian PC screening program design and recruitment strategy and the results of the first 102 individuals who have completed at least one-year of follow-up. Seventy-nine participants met the FPC criteria (≥ two first-degree relatives affected), 22 individuals had both a BRCA2 pathogenic variant and a close relative with PC and one had a clinical diagnosis of Peutz-Jeghers syndrome. Participants reported a high perceived chance of developing PC regardless of their genetic testing status. PancPRO reported FPC participants’ mean 5-year and lifetime PC risks as 1.81% (range 0.2–3.2%) and 10.17% (range 2.4–14.4%), respectively. Participants’ perceived PC chance did not correlate with their PancPRO 5-year (r = − 0.17, p = 0.128) and lifetime PC risks (r = 0.19, p = 0.091). Two-thirds felt that current genetic testing would help them, and 91% of tested participants were glad to have undergone genetic testing. Overall, 79% of participants found genetic counselling to be helpful, and 88% reported they would recommend counselling to their relatives. Conclusions Participants reported multiple benefits of genetic counselling and testing but continue to seek greater clarification about their individual PC risk. Extension of PancPRO is required to enable personalised PC risk assessment for all high-risk sub-groups. More detailed discussion of PC risk for BRCA2 pathogenic variant carriers, providing a written summary in all cases and a plan for genetics review were identified as areas for improvement.
Collapse
Affiliation(s)
- Tanya Dwarte
- 1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia.,2Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW Australia
| | - Skye McKay
- 1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia
| | - Amber Johns
- 1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia
| | - Katherine Tucker
- 2Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW Australia.,3University of New South Wales, Prince of Wales Clinical School, Sydney, NSW Australia
| | - Allan D Spigelman
- 5Cancer Genetics Unit, The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW Australia.,6St Vincent's Clinical School, University of New South Wales, Sydney, NSW Australia
| | - David Williams
- 4Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW Australia
| | - Alina Stoita
- 4Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW Australia
| |
Collapse
|
6
|
Abstract
Selective screening for pancreatic cancer (PC) has been proposed. We describe the establishment of a comprehensive multidisciplinary screening program using 3.0 T MRI. Criteria for screening included the presence of PC in: ≥ 2 first degree relatives (FDR), 1 FDR and 1 s degree relative (SDR), ≥ 3 any degree relatives (ADR), or any known hereditary cancer syndrome with increased PC risk. Imaging with 3.0 T MRI was performed routinely and endoscopic ultrasound was used selectively. Screening was completed in 75 patients (pts). Hereditary cancer syndromes were present in 42 (56%) of the 75 pts: BRCA2 (18), ATM (8), BRCA1 (6), CDKN2A (4), PALB2 (3), Lynch (2), and Peutz-Jeghers (1). A family history of PC was present in ≥ 2 FDR in 12 (16%) pts, 1 FDR and 1 SDR in 5 (7) pts, and ≥ 3 ADR in 16 (21%) pts. Of the 65 pts who received screening MRI, 28 (43%) pts had pancreatic cystic lesions identified, including 1 (1%) patient in whom a cholangiocarcinoma was diagnosed as well. No patient underwent surgical resection. Using a 3.0 T MRI to screen patients at high risk for developing PC identified radiographic abnormalities in 43% of patients, which were stable on subsequent surveillance. Specific guidelines for the frequency of surveillance and indications for surgery remain areas of active investigation as the global experience with high risk screening continues to mature.
Collapse
|
7
|
Matsubayashi H, Takaori K, Morizane C, Maguchi H, Mizuma M, Takahashi H, Wada K, Hosoi H, Yachida S, Suzuki M, Usui R, Furukawa T, Furuse J, Sato T, Ueno M, Kiyozumi Y, Hijioka S, Mizuno N, Terashima T, Mizumoto M, Kodama Y, Torishima M, Kawaguchi T, Ashida R, Kitano M, Hanada K, Furukawa M, Kawabe K, Majima Y, Shimosegawa T. Familial pancreatic cancer: Concept, management and issues. World J Gastroenterol 2017; 23:935-948. [PMID: 28246467 PMCID: PMC5311103 DOI: 10.3748/wjg.v23.i6.935] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Familial pancreatic cancer (FPC) is broadly defined as two first-degree-relatives with pancreatic cancer (PC) and accounts for 4%-10% of PC. Several genetic syndromes, including Peutz-Jeghers syndrome, hereditary pancreatitis, hereditary breast-ovarian cancer syndrome (HBOC), Lynch syndrome, and familial adenomatous polyposis (FAP), also have increased risks of PC, but the narrowest definition of FPC excludes these known syndromes. When compared with other familial tumors, proven genetic alterations are limited to a small proportion (< 20%) and the familial aggregation is usually modest. However, an ethnic deviation (Ashkenazi Jewish > Caucasian) and a younger onset are common also in FPC. In European countries, “anticipation” is reported in FPC families, as with other hereditary syndromes; a trend toward younger age and worse prognosis is recognized in the late years. The resected pancreases of FPC kindred often show multiple pancreatic intraepithelial neoplasia (PanIN) foci, with various K-ras mutations, similar to colorectal polyposis seen in the FAP patients. As with HBOC patients, a patient who is a BRCA mutation carrier with unresectable pancreatic cancer (accounting for 0%-19% of FPC patients) demonstrated better outcome following platinum and Poly (ADP-ribose) polymerase inhibitor treatment. Western countries have established FPC registries since the 1990s and several surveillance projects for high-risk individuals are now ongoing to detect early PCs. Improvement in lifestyle habits, including non-smoking, is recommended for individuals at risk. In Japan, the FPC study group was initiated in 2013 and the Japanese FPC registry was established in 2014 by the Japan Pancreas Society.
Collapse
|
8
|
Abstract
Pancreatic cancer (PC) is a highly fatal disease that can only be cured by complete surgical resection. However, most patients with PC have unresectable disease at the time of diagnosis, highlighting the need to detect PC and its precursor lesions earlier in asymptomatic patients. Screening is not cost-effective for population-based screening of PC. Individuals with genetic risk factors for PC based on family history or known PC-associated genetic syndromes, however, can be a potential target for PC screening programs. This article provides an overview of the epidemiology and genetic background of familial PC and discusses diagnostic and management approaches.
Collapse
Affiliation(s)
- Saowanee Ngamruengphong
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Blalock 407, Baltimore, MD 21287, USA
| | - Marcia Irene Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Blalock 407, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Abstract
Hereditary pancreatic cancer can be diagnosed through family history and/or a personal history of pancreatitis or clinical features suggesting one of the known pancreatic cancer predisposition syndromes. This chapter describes the currently known hereditary pancreatic cancer predisposition syndromes, including Peutz-Jeghers syndrome, familial atypical multiple mole melanoma, hereditary breast and ovarian cancer, Li-Fraumeni syndrome, hereditary non-polyposis colon cancer and familial adenomatous polyposis. Strategies for genetic testing for hereditary pancreatic cancer and the appropriate options for surveillance and cancer risk reduction are discussed. Finally, ongoing research and future directions in the diagnosis and management of hereditary pancreatic cancer will be considered.
Collapse
Affiliation(s)
- Jeremy L Humphris
- The Kinghorn Cancer Centre, Cancer Research Program, 370 Victoria St., Darlinghurst, NSW, 2010, Australia.
| | - Andrew V Biankin
- The Kinghorn Cancer Centre, Cancer Research Program, 370 Victoria St., Darlinghurst, NSW, 2010, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, Bearsden, G61 1BD, United Kingdom
| |
Collapse
|
10
|
Capurso G, Signoretti M, Valente R, Arnelo U, Lohr M, Poley JW, Fave GD, Chiaro MD. Methods and outcomes of screening for pancreatic adenocarcinoma in high-risk individuals. World J Gastrointest Endosc 2015; 7:833-842. [PMID: 26240684 PMCID: PMC4515417 DOI: 10.4253/wjge.v7.i9.833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/13/2015] [Accepted: 06/11/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal neoplasia, for which secondary prevention (i.e., screening) is advisable for high-risk individuals with “familiar pancreatic cancer” and with other specific genetic syndromes (Peutz-Jeghers, p16, BRCA2, PALB and mismatch repair gene mutation carriers). There is limited evidence regarding the accuracy of screening tests, their acceptability, costs and availability, and agreement on whom to treat. Successful target of screening are small resectable PDAC, intraductal papillary mucinous neoplasms with high-grade dysplasia and advanced pancreatic intraepithelial neoplasia. Both magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS) are employed for screening, and the overall yield for pre-malignant or malignant pancreatic lesions is of about 20% with EUS and 14% with MRI/magnetic resonance colangiopancreatography. EUS performs better for solid and MRI for cystic lesions. However, only 2% of these detected lesions can be considered a successful target, and there are insufficient data demonstrating that resection of benign or low grade lesions improves survival. Many patients in the published studies therefore seemed to have received an overtreatment by undergoing surgery. It is crucial to better stratify the risk of malignancy individually, and to better define optimal screening intervals and methods either with computerized tools or molecular biomarkers, possibly in large multicentre studies. At the moment, screening should be carefully performed within research protocols at experienced centres, offering involved individuals medical and psychological advice.
Collapse
|
11
|
Bruenderman EH, Martin RCG. High-risk population in sporadic pancreatic adenocarcinoma: guidelines for screening. J Surg Res 2014; 194:212-9. [PMID: 25479908 DOI: 10.1016/j.jss.2014.06.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/24/2014] [Accepted: 06/24/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most deadly forms of cancer in the United States, with an annual incidence to death ratio of 0.92 because of the late stage at diagnosis. Identification of high-risk individuals (HRIs) that would be ideal for screening is needed to identify precursor lesions and small early stage disease. Those with a genetic predisposition have largely been identified, but little is known about those at high-risk for sporadic PC. This study asserts that a high-risk population does exist in sporadic pancreatic adenocarcinoma and proposes simple guidelines for screening. METHODS A systematic review was conducted of the literature regarding identification of and screening in high-risk groups. RESULTS Those with the highest genetic risk of developing PC include those with hereditary pancreatitis (87 times more likely at age 55), Peutz-Jehgers syndrome (132 times more likely at age 50), p16-Leiden mutations (48 times more likely), and familial pancreatic cancer (FPC) kindreds (32 times more likely). Those with the highest risk of developing sporadic PC include those with new-onset diabetes older than 50 y and smoking history. CONCLUSIONS Given that sporadic PC is the single largest patient population effected with this devastating disease, some form of screening should be initiated. Currently, the medical community does nothing to attempt early detection of PC. However, sufficient evidence now exists to begin a screening protocol in a high-risk cohort, which would be patients with new-onset diabetes older than 50 y and a smoking history.
Collapse
Affiliation(s)
| | - Robert C G Martin
- Department of Surgery, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
12
|
Ghiorzo P. Genetic predisposition to pancreatic cancer. World J Gastroenterol 2014; 20:10778-89. [PMID: 25152581 PMCID: PMC4138458 DOI: 10.3748/wjg.v20.i31.10778] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/08/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PC) is the most deadly of the common cancers. Owing to its rapid progression and almost certain fatal outcome, identifying individuals at risk and detecting early lesions are crucial to improve outcome. Genetic risk factors are believed to play a major role. Approximately 10% of PC is estimated to have familial inheritance. Several germline mutations have been found to be involved in hereditary forms of PC, including both familial PC (FPC) and PC as one of the manifestations of a hereditary cancer syndrome or other hereditary conditions. Although most of the susceptibility genes for FPC have yet to be identified, next-generation sequencing studies are likely to provide important insights. The risk of PC in FPC is sufficiently high to recommend screening of high-risk individuals; thus, defining such individuals appropriately is the key. Candidate genes have been described and patients considered for screening programs under research protocols should first be tested for presence of germline mutations in the BRCA2, PALB2 and ATM genes. In specific PC populations, including in Italy, hereditary cancer predisposition genes such as CDKN2A also explain a considerable fraction of FPC.
Collapse
|
13
|
Abstract
INTRODUCTION Familial pancreatic cancer (FPC) is defined by families with at least two first-degree relatives with confirmed pancreatic ductal adenocarcinoma (PDAC) that do not fulfill the criteria of other inherited tumor syndromes with an increased risk for the development of PDAC, such as hereditary pancreatitis or hereditary breast and ovarian cancer. FPC is mostly autosomal dominant inherited and presents with a heterogeneous phenotype. Although the major gene defect has not yet been identified, some important germline mutations in the BRCA2-, PALB2-, and ATM-genes are causative in some FPC families. FPC SCREENING It is suggested by experts to include high-risk individuals in a screening program with a multidisciplinary approach under research protocol conditions. However, neither biomarkers nor reliable imaging modalities for the detection of high-grade precursor lesions are yet available. Most screening programs are currently based on endoscopic ultrasound and magnetic resonance imaging, and first data demonstrated that precursor lesions (pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm) of PDAC can be identified. Timing and extent of surgery are still a matter of debate. SCOPE OF THE REVIEW The present review focuses on the clinical phenotype of FPC, its histopathological characteristics, known underlying genetic changes, genetic counseling, and screening.
Collapse
Affiliation(s)
- Volker Fendrich
- National Case Collection of Familial Pancreatic Cancer of the Deutsche Krebshilfe (FaPaCa), Department of Surgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany,
| | | | | |
Collapse
|
14
|
Abstract
Familial pancreatic cancer (FPC) describes families with at least two first-degree relatives with confirmed exocrine pancreatic cancer that do not fulfil the criteria of other inherited tumour syndromes with increased risks of pancreatic cancer, such as Peutz-Jeghers syndrome, hereditary pancreatitis, and hereditary breast and ovarian cancer. The inheritance of FPC is mostly autosomal dominant and with a heterogeneous phenotype. The major gene defect is yet to be identified, although germline mutations in BRCA2, PALB2 and ATM are causative in some FPC families. Expert consensus conferences considered it appropriate to screen for pancreatic cancer in high-risk individuals using a multidisciplinary approach under research protocol conditions. However, neither biomarkers nor reliable imaging modalities for the detection of high-grade precursor lesions are yet available. Most screening programmes are currently based on findings from endoscopic ultrasonography and MRI, and data has demonstrated that precursor lesions of pancreatic cancer can be identified. No consensus exists regarding the age to initiate or stop screening and the optimal intervals for follow-up. Timing and extent of surgery as a treatment for FPC are debated. This Review focuses on the clinical phenotype of FPC, its histopathological characteristics, known underlying genetic changes and associated genetic counselling and screening.
Collapse
|
15
|
Pezzilli R, Morselli-Labate AM. Selecting families eligible for pancreatic cancer screening: another brick in the wall for the early detection of pancreatic ductal adenocarcinoma and its precursors. Dig Liver Dis 2012; 44:539-40. [PMID: 22561444 DOI: 10.1016/j.dld.2012.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/31/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy.
| | | |
Collapse
|