1
|
Sun JR, Kong CF, Ye YX, Wang Q, Qu XK, Jia LQ, Wu S. Integrated analysis of single-cell and bulk RNA-sequencing reveals a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in gastric cancer. Sci Rep 2024; 14:7648. [PMID: 38561388 PMCID: PMC10985121 DOI: 10.1038/s41598-024-57714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, thus providing a new perspective for assessing immunotherapy and the prognosis of patients with gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We performed a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of gastric cancer and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established a 12-gene NK cell-associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that assigned GC patients into a low-risk group (LRG) or a high-risk group (HRG). In the TCGA cohort, the areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts (GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by real-time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score was negatively associated with inflammatory activities. Importantly, analysis of the independent immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response when compared with the HRG. The identification of NK cell marker genes in this study suggests potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may aid in the clinical management of GC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Chen-Fan Kong
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China
| | - Yi-Xiang Ye
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Qin Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Xiang-Ke Qu
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Li-Qun Jia
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China.
| | - Song Wu
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
2
|
Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 2023; 25:578-591. [PMID: 36315334 DOI: 10.1007/s12094-022-02981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.
Collapse
|
3
|
Qie Y, Zhou D, Wu Z, Liu S, Shen C, Hu H, Zhang C, Xu Y. Low-dose hexavalent chromium(VI) exposure promotes prostate cancer cell proliferation by activating MAGEB2-AR signal pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113724. [PMID: 35660381 DOI: 10.1016/j.ecoenv.2022.113724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with several malignancies, such as lung cancer, but little information was available about the effects of its low-dose environmental exposure in prostate cancer. Our previous study has shown that low-dose Cr(VI) exposure could promote prostate cancer(PCa) cell growth in vitro and in vivo. In the present study, we furthermore found that low-dose Cr(VI) exposure could induce DNA demethylation in PCa cells. Based on our transcriptome sequencing data and DNA methylation database, we further identified MAGEB2 as a potential effector target that contributed to tumor-promoting effect of low-dose Cr(VI) exposure in PCa. In addition, we demonstrated that MAGEB2 was upregulated in PCa and its knockdown restrained PCa cell proliferation and tumor growth in vitro and in vivo. Moreover, Co-IP and point mutation experiments confirmed that MAGEB2 could bind to the NH2-terminal NTD domain of AR through the F-box in the MAGE homology domain, and then activated AR through up-regulating its downstream targets PSA and NX3.1. Together, low-dose Cr(VI) exposure can induce DNA demethylation in prostate cancer cells, and promote cell proliferation via activating MAGEB2-AR signaling pathway. Thus, inhibition of MAGEB2-AR signaling is a novel and promising strategy to reverse low-dose Cr(VI) exposure-induced prostate tumor progression, also as effective adjuvant therapy for AR signaling-dependent PCa.
Collapse
Affiliation(s)
- Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shenglai Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
4
|
Wang ZY, Jiang YZ, Xiao W, Xue XB, Zhang XW, Zhang L. Prognostic impact of tumor length in esophageal Cancer: a systematic review and Meta-analysis. BMC Cancer 2021; 21:988. [PMID: 34479538 PMCID: PMC8417991 DOI: 10.1186/s12885-021-08728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/26/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In clinical studies, it has been observed that esophageal cancer (EC) patient prognosis can be very different even for those patients with tumors of the same TNM stage. Tumor length has been analysed as a possible independent prognostic factor in many studies, but no unanimous conclusion has been reached. Therefore, this review used a meta-analysis to evaluate the association between tumor length and prognosis in EC patients. METHODS A systematic search for relevant articles was performed in PubMed, Web of Science, and Embase. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used as effective measures to estimate the correlation between tumor length and prognosis, including overall survival, disease-free survival, progression-free survival, disease-specific survival, and cancer-specific survival. STATA 15.0 software was used to perform the meta-analysis and the data synthesis. RESULTS Finally, 41 articles with 28,973 patients were included in our study. The comprehensive statistical results showed that long tumors are an independent prognostic parameter associated with poor overall survival (OS) (HR = 1.30; 95% CI: 1.21-1.40, p < .001) and disease-free survival (DFS) (HR = 1.38; 95% CI: 1.18-1.61, p < .001) in EC patients. Subgroup analyses also suggested a significant correlation between long tumors and poor OS. Sensitivity analysis and publication bias evaluation confirmed the reliability and stability of the results. Similar results were obtained in the analyses of progression-free survival (PFS), disease-specific survival (DSS), and cancer-specific survival (CSS). CONCLUSION The results of this meta-analysis showed that long tumors were related to poor OS, DFS, PFS, DSS and CSS in EC patients. Tumor length might be an important predictor of prognosis in EC patients, and it can be used as an independent staging index. Further well-designed and large-scale prospective clinical studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zhao Yang Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing wu Road, Jinan, 250021, Shandong, China
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Yuan Zhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing wu Road, Jinan, 250021, Shandong, China
| | - Wen Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing wu Road, Jinan, 250021, Shandong, China
| | - Xian Biao Xue
- Department of Thoracic Surgery, Juye County People's Hospital, Ju ye, China
| | - Xiang Wei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing wu Road, Jinan, 250021, Shandong, China.
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing wu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Poojary M, Jishnu PV, Kabekkodu SP. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol Diagn Ther 2021; 24:537-555. [PMID: 32548799 PMCID: PMC7497308 DOI: 10.1007/s40291-020-00476-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Members of the melanoma-associated antigen-A (MAGE-A) subfamily are overexpressed in many cancers and can drive cancer progression, metastasis, and therapeutic recurrence. Objective This study is the first comprehensive meta-analysis evaluating the prognostic utility of MAGE-A members in different cancers. Methods A systematic literature search was conducted in PubMed, Google Scholar, Science Direct, and Web of Science. The pooled hazard ratios with 95% confidence intervals were estimated to evaluate the prognostic significance of MAGE-A expression in various cancers. Results In total, 44 eligible studies consisting of 7428 patients from 11 countries were analysed. Univariate and multivariate analysis for overall survival, progression-free survival, and disease-free survival showed a significant association between high MAGE-A expression and various cancers (P < 0.00001). Additionally, subgroup analysis demonstrated that high MAGE-A expression was significantly associated with poor prognosis for lung, gastrointestinal, breast, and ovarian cancer in both univariate and multivariate analysis for overall survival. Conclusion Overexpression of MAGE-A subfamily members is linked to poor prognosis in multiple cancers. Therefore, it could serve as a potential prognostic marker of poor prognosis in cancers. Electronic supplementary material The online version of this article (10.1007/s40291-020-00476-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Poojary
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
7
|
Ishihara M, Kageyama S, Miyahara Y, Ishikawa T, Ueda S, Soga N, Naota H, Mukai K, Harada N, Ikeda H, Shiku H. MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours. BMC Cancer 2020; 20:606. [PMID: 32600281 PMCID: PMC7325278 DOI: 10.1186/s12885-020-07098-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cancer testis (CT) antigens are promising targets for cancer immunotherapies such as cancer vaccines and genetically modified adoptive T cell therapy. In this study, we evaluated the expression of three CT antigens, melanoma-associated antigen A4 (MAGE-A4), New York oesophageal squamous cell carcinoma 1 (NY-ESO-1) and sarcoma antigen gene (SAGE). Methods MAGE-A4, NY-ESO-1 and/or SAGE antigen expression in tumour samples was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Informed consent was obtained from individuals prior to study enrolment. Results In total, 585 samples in 21 tumour types were evaluated between June 2009 and March 2018. The positive expression rates of these CT antigens were as follows: MAGE-A4, 34.6% (range, 30.7–38.7); NY-ESO-1, 21.0% (range, 17.2–25.1); and SAGE, 21.8% (range, 18.5–25.4). The MAGE-A4 antigen was expressed in 54.9% of oesophageal cancers, 37.5% of head and neck cancers, 35.0% of gastric cancers and 34.2% of ovarian cancers; the NY-ESO-1 antigen was expressed in 28.6% of lung cancers, 25.3% of oesophageal cancers and 22.6% of ovarian cancers; and the SAGE antigen was expressed in 35.3% of prostate cancers, 32.9% of oesophageal cancers and 26.3% of ovarian cancers. The most common tumour type in this study was oesophageal cancer. MAGE-A4, NY-ESO-1 and SAGE antigen expression were assessed in 214 oesophageal cancer samples, among which 24 (11.2%) were triple-positive, 58 (27.1%) were positive for any two, 59 (27.6%) were positive for any one, and 73 (34.1%) were triple negative. Conclusions Oesophageal cancer exhibited a relatively high rate of CT antigen mRNA expression positivity.
Collapse
Affiliation(s)
- Mikiya Ishihara
- Cancer Center, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Takeshi Ishikawa
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shugo Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Norihito Soga
- Department of Urology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroaki Naota
- Department of Gastroenterology, Matsusaka Chuo General Hospital, 102 Kobou, Kawai-machi, Matsusaka, Mie, 515-8566, Japan
| | - Katsumi Mukai
- Department of Gastroenterology, Suzuka General Hospital, 1275-53, Yamanohana, Yasuzuka-cho, Suzuka, Mie, 513-8630, Japan
| | - Naozumi Harada
- United Immunity, Co., Ltd, Room 220, Mie University Campus Incubator, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| |
Collapse
|