1
|
Kang Q, Ma D, Zhao P, Chai X, Huang Y, Gao R, Zhang T, Liu P, Deng B, Feng C, Zhang Y, Lu Y, Li Y, Fang Q, Wang J. BRG1 promotes progression of B-cell acute lymphoblastic leukemia by disrupting PPP2R1A transcription. Cell Death Dis 2024; 15:621. [PMID: 39187513 PMCID: PMC11347705 DOI: 10.1038/s41419-024-06996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Despite advancements in chemotherapy and the availability of novel therapies, the outcome of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) remains unsatisfactory. Therefore, it is necessary to understand the molecular mechanisms underlying the progression of B-ALL. Brahma-related gene 1 (BRG1) is a poor prognostic factor for multiple cancers. Here, the expression of BRG1 was found to be higher in patients with B-ALL, irrespective of the molecular subtype, than in healthy individuals, and its overexpression was associated with a poor prognosis. Upregulation of BRG1 accelerated cell cycle progression into the S phase, resulting in increased cell proliferation, whereas its downregulation facilitated the apoptosis of B-ALL cells. Mechanistically, BRG1 occupies the transcriptional activation site of PPP2R1A, thereby inhibiting its expression and activating the PI3K/AKT signaling pathway to regulate the proto-oncogenes c-Myc and BCL-2. Consistently, silencing of BRG1 and administration of PFI-3 (a specific inhibitor targeting BRG1) significantly inhibited the progression of leukemia and effectively prolonged survival in cell-derived xenograft mouse models of B-ALL. Altogether, this study demonstrates that BRG1-induced overactivation of the PPP2R1A/PI3K/AKT signaling pathway plays an important role in promoting the progression of B-ALL. Therefore, targeting BRG1 represents a promising strategy for the treatment of B-ALL in adults.
Collapse
Affiliation(s)
- Qian Kang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Zhao
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiao Chai
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yi Huang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tianzhuo Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ping Liu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Deng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Feng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yanju Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Wu X, Fan R, Zhang Y, Duan C, Yao X, Liu K, Lin D, Chen Z. The role of BUD31 in clear cell renal cell carcinoma: prognostic significance, alternative splicing, and tumor immune environment. Clin Exp Med 2024; 24:191. [PMID: 39136845 PMCID: PMC11322202 DOI: 10.1007/s10238-024-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
BUD31, a splicing factor, is linked to various cancers. This study examines BUD31's expression, prognostic value, mutation profile, genomic instability, tumor immune environment, and role in clear cell renal cell carcinoma (ccRCC), focusing on cell cycle regulation via alternative splicing. BUD31 expression was analyzed using TCGA and GTEx databases across 33 cancers. Techniques included IHC staining, survival analysis, Cox regression, and nomogram construction. Mutation landscape, genomic instability, and tumor immune microenvironment were evaluated. Functional assays on ccRCC cell lines involved BUD31 knockdown, RNA sequencing, and alternative splicing analysis. BUD31 was upregulated in multiple tumors, including ccRCC. High BUD31 expression correlated with worse survival outcomes and was identified as an independent predictor of poor prognosis in ccRCC. High BUD31 expression also correlated with increased genomic instability and a less active immune microenvironment. BUD31 knockdown inhibited cell proliferation, migration, and invasion in vitro and reduced tumor growth in vivo. RNA sequencing identified 390 alternative splicing events regulated by BUD31, including 17 cell cycle-related genes. KEGG analysis highlighted pathways involved in cell cycle regulation, indicating BUD31's role in promoting cell cycle progression through alternative splicing. BUD31 is upregulated in various tumors and is associated with poor outcomes, increased genomic instability, and a suppressed immune microenvironment in ccRCC. BUD31 promotes cell cycle progression via alternative splicing, suggesting it as a prognostic biomarker and potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Xiaoliang Wu
- Department of Urology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Ruixin Fan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Chen Duan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Kai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Dongxu Lin
- Department of Urology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| |
Collapse
|
3
|
Guo H, Cui BD, Gong M, Li QX, Zhang LX, Chen JL, Chi J, Zhu LL, Xu EP, Wang ZM, Dai LP. An ethanolic extract of Arctium lappa L. leaves ameliorates experimental atherosclerosis by modulating lipid metabolism and inflammatory responses through PI3K/Akt and NF-κB singnaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117768. [PMID: 38253275 DOI: 10.1016/j.jep.2024.117768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1β, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.
Collapse
Affiliation(s)
- Hui Guo
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Bing-di Cui
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Man Gong
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Qing-Xia Li
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Ling-Xia Zhang
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Jia-Li Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, China.
| | - Jun Chi
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Li-Li Zhu
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Er-Ping Xu
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Zhi-Min Wang
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li-Ping Dai
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Liu Y, Wang X, Liu Y, Yang J, Mao W, Feng C, Wu X, Chen X, Chen L, Dong P. N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway. Cell Death Dis 2023; 14:712. [PMID: 37914704 PMCID: PMC10620198 DOI: 10.1038/s41419-023-06245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that regulates in various important biological processes. However, its role in human cancer, especially lymph node metastasis, remains largely unknown. Here, we demonstrated N-Acetyltransferase 10 (NAT10), as the only known "writer" of ac4C mRNA modification, was highly expressed in head and neck squamous cell carcinoma (HNSCC) patients with lymph node metastasis. High NAT10 levels in the lymph nodes of patients with HNSCC patients are a predictor of poor overall survival. Moreover, we found that high expression of NAT10 was positively upregulated by Nuclear Respiratory Factor 1 (NRF1) transcription factor. Gain- and loss-of-function experiments displayed that NAT10 promoted cell metastasis in mice. Mechanistically, NAT10 induced ac4C modification of Glycosylated Lysosomal Membrane Protein (GLMP) and stabilized its mRNA, which triggered the activation of the MAPK/ERK signaling pathway. Finally, the NAT10-specific inhibitor, remodelin, could inhibit HNSCC tumorigenesis in a 4-Nitroquinoline 1-oxide (4NQO)-induced murine tumor model and remodel the tumor microenvironment, including angiogenesis, CD8+ T cells and Treg recruitment. These results demonstrate that NAT10 promotes lymph node metastasis in HNSCC via ac4C-dependent stabilization of the GLMP transcript, providing a potential epitranscriptomic-targeted therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xing Wang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330046, China
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yuying Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Wei Mao
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chen Feng
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoliang Wu
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
5
|
Wu S, Liu M, Xiao S, Lai M, Wei L, Li D, Wang L, Yin F, Zeng X. Identification and verification of novel ferroptosis biomarkers predicts the prognosis of hepatocellular carcinoma. Genomics 2023; 115:110733. [PMID: 37866659 DOI: 10.1016/j.ygeno.2023.110733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Big data mining and experiments are widely used to mine new prognostic markers. METHODS Candidate genes were identified from CROEMINE and FerrDb. Kaplan-Meier survival and Cox regression analysis were applied to assess the association of genes with Overall survival time (OS) and Disease-free survival time (DFS) in two HCC cohorts. Real-time quantitative polymerase chain reaction (RT-qPCR) and Immunohistochemistry were performed in HCC samples. RESULTS 21 and 15 genes that can predict OS and DFS, which had not been reported before, were identified from 719 genes, respectively. Survival analysis showed elevated mRNA expression of GLMP, SLC38A6, and WDR76 were associated with poor prognosis, and three genes combination signature was an independent prognostic factor in HCC. RT-qPCR and Immunohistochemistry confirmed the results. CONCLUSIONS We established a novel computational process, which identified the expression levels of GLMP, SLC38A6, and WDR76 as potential ferroptosis-related biomarkers indicating the prognosis of HCC.
Collapse
Affiliation(s)
- Siqian Wu
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Meiliang Liu
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Suyang Xiao
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Mingshuang Lai
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Liling Wei
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Deyuan Li
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Lijun Wang
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China.
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of public health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China.
| |
Collapse
|
6
|
Li S, Hao L, Deng J, Zhang J, Hu X. Coptidis rhizoma and evodiae fructus against lipid droplet deposition in nonalcoholic fatty liver disease-related liver cancer by AKT. Chem Biol Drug Des 2023; 102:828-842. [PMID: 37460115 DOI: 10.1111/cbdd.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 09/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. NAFLD has become one of the major factors contributing to hepatocellular carcinoma (HCC) development. However, there are no clear targets and therapeutic drugs for NAFLD-related liver cancer. This study explored the active compounds, target and mechanism of coptidis rhizoma and evodiae fructus in the treatment of NAFLD-related liver cancer based on the network pharmacology and experimental verification. There were 455 intersection targets of NAFLD-related liver cancer, and 65 drug-disease common targets. AKT1 has the highest degree, indicating that it may be a key target of coptidis rhizoma and evodiae fructus in the treatment of NAFLD-related liver cancer. The expression level of AKT1 was high in high-risk group, and the overall survival rate was lower than that in low-risk group. After oleic acid induction, p-AKT expression and lipid droplet deposition were promoted in HepG2 cells. Quercetin and resveratrol reduced lipid droplet deposition in vivo. Moreover, quercetin inhibited p-AKT expression, resveratrol both reduced the expression of p-AKT and AKT. The overall findings suggested that quercetin inhibited AKT in the treatment of NAFLD-related liver cancer.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
BRG1 in cancer: An insufficiently explored and controversial research area. Dig Liver Dis 2022; 54:1734. [PMID: 35999135 DOI: 10.1016/j.dld.2022.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
|