1
|
Wei KC, Lin JT, Lin CH. Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats. Neurochem Int 2024; 183:105926. [PMID: 39734024 DOI: 10.1016/j.neuint.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats. Cortical astrocytes were treated with celecoxib (20 μM) for 24 h, resulting in a significant increase in COX-2 expression and up-regulation of GFAP, a marker of astrocyte activation, and the COX-2 induced by celecoxib is functionally active in prostaglandin E2 (PGE2) synthesis. Celecoxib also enhanced LPS-induced COX-2 expression, but its ability to inhibit PGE2 synthesis decreased at higher concentrations. Celecoxib induced phosphorylation of Extracellular signal-regulated Kinase (ERK) and c-Jun N-terminal Kinase (JNK) but not p38 Mitogen-Activated Protein Kinase (p38 MAPK), and inhibition of activity of ERK and JNK by U0126 and SP600125 effectively blocked COX-2 and GFAP induction by celecoxib. Celecoxib increased the accumulation of transcription factor AP-1 (composed of phosphorylated c-Jun and c-fos) in the nucleus. Inhibition of AP-1 activity with SR11302 significantly prevented celecoxib-induced COX-2 and GFAP expression. Additionally, the inhibiting activity of ERK and JNK can effectively suppress AP-1 expression and activity induced by celecoxib. These findings demonstrated that celecoxib induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway, highlighting its potential effect in modulating inflammatory responses in the central nervous system.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaoshiung, 813, Taiwan; College of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jun-Ting Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan.
| |
Collapse
|
2
|
Feng BM, Zhang YY, Zhou XC, Wang JL, Feng YF. MolLoG: A Molecular Level Interpretability Model Bridging Local to Global for Predicting Drug Target Interactions. J Chem Inf Model 2024; 64:4348-4358. [PMID: 38709146 DOI: 10.1021/acs.jcim.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Developing new pharmaceuticals is a costly and time-consuming endeavor fraught with significant safety risks. A critical aspect of drug research and disease therapy is discerning the existence of interactions between drugs and proteins. The evolution of deep learning (DL) in computer science has been remarkably aided in this regard in recent years. Yet, two challenges remain: (i) balancing the extraction of profound, local cohesive characteristics while warding off gradient disappearance and (ii) globally representing and understanding the interactions between the drug and target local attributes, which is vital for delivering molecular level insights indispensable to drug development. In response to these challenges, we propose a DL network structure, MolLoG, primarily comprising two modules: local feature encoders (LFE) and global interactive learning (GIL). Within the LFE module, graph convolution networks and leap blocks capture the local features of drug and protein molecules, respectively. The GIL module enables the efficient amalgamation of feature information, facilitating the global learning of feature structural semantics and procuring multihead attention weights for abstract features stemming from two modalities, providing biologically pertinent explanations for black-box results. Finally, predictive outcomes are achieved by decoding the unified representation via a multilayer perceptron. Our experimental analysis reveals that MolLoG outperforms several cutting-edge baselines across four data sets, delivering superior overall performance and providing satisfactory results when elucidating various facets of drug-target interaction predictions.
Collapse
Affiliation(s)
- Bao-Ming Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520 Shandong, China
| | - Yuan-Yuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520 Shandong, China
| | - Xiao-Chen Zhou
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520 Shandong, China
| | - Jin-Long Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520 Shandong, China
| | - Yin-Fei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520 Shandong, China
| |
Collapse
|
3
|
Jurva U, Sandinge AS, Baek JM, Avanthay M, Thomson RES, D'Cunha SA, Andersson S, Hayes MA, Gillam EMJ. Biocatalysis using Thermostable Cytochrome P450 Enzymes in Bacterial Membranes - Comparison of Metabolic Pathways with Human Liver Microsomes and Recombinant Human Enzymes. Drug Metab Dispos 2024; 52:242-251. [PMID: 38176735 DOI: 10.1124/dmd.123.001569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity. Importantly, biotransformations are more sustainable: they proceed under mild conditions and avoid environmentally damaging solvents and transition metal catalysts. Recombinant enzymes avoid the need to use animal liver microsomes. However, native enzymes must be stabilized to work for extended periods or at elevated temperatures, and stabilizing mutations can alter catalytic activity. Here we assessed a set of novel, thermostable P450s in bacterial membranes, a format analogous to liver microsomes, for their ability to metabolize drugs through various pathways and compared them to human liver microsomes. Collectively, the thermostable P450s could replicate the metabolic pathways seen with human liver microsomes, including bioactivation to protein-reactive intermediates. Novel metabolites were found, suggesting the possibility of obtaining metabolites not produced by human or rodent liver microsomes. Importantly, no alteration in assay conditions from standard protocols for microsomal incubations was necessary. Thus, such bacterial membranes represent an analogous metabolite generation system to liver microsomes in terms of metabolites produced and ease of use, but which provides access to more diversity of metabolite structures. SIGNIFICANCE STATEMENT: In drug development it is often chemically challenging, to synthesize authentic metabolites of drug candidates for structural identification and evaluation of activity and safety. Biosynthesis using microsomes or recombinant human enzymes is confounded by the instability of the enzymes. Here we show that thermostable ancestral cytochrome P450 enzymes derived from P450 families responsible for human drug metabolism offer advantages over the native human forms in being more robust and over microbial enzymes in faithfully reflecting human drug metabolism.
Collapse
Affiliation(s)
- Ulrik Jurva
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Ann-Sofie Sandinge
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Jong Min Baek
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Mickaël Avanthay
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Raine E S Thomson
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Stephlina A D'Cunha
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Shalini Andersson
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Martin A Hayes
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Elizabeth M J Gillam
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| |
Collapse
|
4
|
Shirata T, Yano S, Noto K, Kanno M, Suzuki A. Jitteriness/anxiety syndrome caused by coadministration of celecoxib, a selective COX-2 inhibitor, with escitalopram and trazodone in a patient with depression and spondylolisthesis. Neuropsychopharmacol Rep 2023. [PMID: 36847164 DOI: 10.1002/npr2.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Antidepressant-induced jitteriness/anxiety syndrome is characterized as anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia, and (hypo)mania, which appear immediately after initiation or increased dosage of an antidepressant. This report describes a case of the jitteriness/anxiety syndrome caused by the coadministration of celecoxib with escitalopram and trazodone in a patient with depression and spondylolisthesis. The depression of a patient, a woman in her 60 s, had been in remission at least for 5 years under treatment using escitalopram and trazodone. Immediately after coadministration of celecoxib because of her buttock and limb pain, she showed anxiety, agitation, akathisia, insomnia, irritability, aggressiveness, impulsivity, and hypomania. These symptoms disappeared after the discontinuation of celecoxib. The present case suggests that coadministration of celecoxib with escitalopram and trazodone can cause the jitteriness/anxiety syndrome, presumably via a pharmacokinetic interaction of celecoxib with these antidepressants and/or the effects of celecoxib on serotonergic neurotransmission.
Collapse
Affiliation(s)
- Toshinori Shirata
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinji Yano
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Keisuke Noto
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Muneaki Kanno
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Akihito Suzuki
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
5
|
Xie J, Zhao C, Ouyang J, He H, Huang D, Liu M, Wang J, Zhang W. TP-DDI: A Two-Pathway Deep Neural Network for Drug-Drug Interaction Prediction. Interdiscip Sci 2022; 14:895-905. [PMID: 35622314 DOI: 10.1007/s12539-022-00524-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Adverse drug-drug interactions (DDIs) can severely damage the body. Thus, it is essential to accurately predict DDIs. DDIs are complex processes in which many factors can cause interactions. Rather than merely considering one or two of the factors, we design a two-pathway drug-drug interaction framework named TP-DDI that uses multimodal data for DDI prediction. TP-DDI effectively explores the combined effect of a topological structure-based pathway and a biomedical object similarity-based pathway to obtain multimodal drug representations. For the topology-based pathway, we focus on drug chemistry structures through the self-attention mechanism, which can capture hidden critical relationships, especially between pairs of atoms at remote topological distances. For the similarity-based pathway, our model can emphasize useful biomedical objects according to the channel weights. Finally, the fusion of multimodal data provides a holistic view of DDIs by learning the complementary features. On a real-world dataset, experiments show that TP-DDI can achieve better performance than the state-of-the-art models. Moreover, we can find the most critical substructures with certain interpretability in the newly predicted DDIs.
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Chang Zhao
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jiaming Ouyang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Hongjian He
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Dingkai Huang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Mengjiao Liu
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Wenjun Zhang
- College of Information Technology, Shanghai Jianqiao University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
7
|
Wu X, An Q, Dong J, Wang K, Jin Y, Liu X, Zhang Z. Inhibition of imrecoxib on mRNA and protein expression of CYP2C11 enzyme in rats. Biomed Chromatogr 2022; 36:e5439. [PMID: 35778888 DOI: 10.1002/bmc.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To evaluate the effect of imrecoxib on CYP2C11 enzyme activity, mRNA and protein expression. METHOD An ultra-performance liquid chromatography (UPLC) method was established. Tolbutamide was selected as CYP2C11 enzyme-specific probe drug and incubated with imrecoxib in rat liver microsomes. The amount of 4-hydroxytolbutamide produced was measured by UPLC to investigate the effect of imrecoxib on CYP2C11 enzyme activity. Imrecoxib (10 mg/kg) was given by intragastric administration twice daily. After 1, 7 and 14 days of administration, liver tissues were taken. The expression of CYP2C11 enzyme mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR), and its protein expression was determined by Western Blot. RESULTS Imrecoxib concentration was inversely proportional to the production of 4-hydroxytolbutamide in liver microsomes. Imrecoxib demonstrated dose-dependent inhibitory effect on CYP2C11 activity with IC50=74.77 μM. After administration, RT-PCR showed CYP2C11 enzyme mRNA expressions were 65% (P<0.05), 35%, and 34% of control group, respectively (P<0.01). Western Blot showed CYP2C11 enzyme protein expressions were 80%, 37%, and 34% of control group, respectively (P<0.01). CONCLUSION Imrecoxib can reduce mRNA and protein expression of CYP2C11 enzyme in rat liver and inhibit the activity of CYP2C11 enzyme in a dose-dependent manner. However, it will not produce clinically significant drug interactions.
Collapse
Affiliation(s)
- Xikun Wu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Qi An
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Jie Dong
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Kexin Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Yiran Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Xiujv Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Zhiqing Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| |
Collapse
|
8
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Morozova TE, Shatsky DA, Shikh NV, Shikh EV, Andrushchyshina TB, Lukina MV, Kachanova AA, Sozaeva ZA, Shuev GN, Denisenko NP, Grishina EА, Sychev DA. Pharmacogenetic Aspects of Postoperative Anesthesia with Ketoprofen in Cardiac Surgery Patients. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-10-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. Evaluation of the effect of polymorphisms of the CYP2D6, CYP2C8 genes on the efficacy and safety of postoperative analgesia with ketoprofen in patients with coronary artery disease after cardiac surgery.Material and methods. The study included 90 patients with an established diagnosis of coronary artery disease and postoperative period after cardiac surgery. Patients received ketoprofen 100 mg intramuscularly 2 times a day for 5 days. The intensity of pain was rated by Numeric Rating Scale. The severity of dyspepsia was assessed by the Gastrointestinal Symptom Rating Scale (GSRS) questionnaire. DNA was isolated from venous blood using an automated system. Single nucleotide polymorphisms CYP2C8 (C>T) rs11572080, CYP2D6*4 (1846G>A) rs3892097 were determined by the real-time polymerase chain reaction method.Results. In patients with genotypes GA and GG for the allelic variant CYP2D6*4, significant differences in the intensity of pain syndrome were found on days 4 and 5 of the postoperative period: 3,91±2,17 and 4,95±1,8 points (p=0,04), 3,52±1,95 and 4,5±1,7 points (p=0,04) in patients with GA and GG genotypes on days 4 and 5, respectively. In patients with the CT genotype for the CYP2C8 rs11572080, the severity of dyspepsia by GSRS was significantly higher than in patients with the CC genotype: 22,67±7,64 and 18,97±4,25 points, respectively.Conclusion. Patients with the GA genotype for the CYP2D6*4 allelic variant showed a lower intensity of pain syndrome than the GG genotype. In patients with the CT genotype for the CYP2C8 rs11572080, higher dyspepsia was revealed than in the CC genotype.
Collapse
Affiliation(s)
- T. E. Morozova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - D. A. Shatsky
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - N. V. Shikh
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. V. Shikh
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - M. V. Lukina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Kachanova
- Russian Medical Academy of Continuing Professional Education
| | - Z. A. Sozaeva
- Russian Medical Academy of Continuing Professional Education
| | - G. N. Shuev
- Russian Medical Academy of Continuing Professional Education
| | - N. P. Denisenko
- Russian Medical Academy of Continuing Professional Education
| | - E. А. Grishina
- Russian Medical Academy of Continuing Professional Education
| | - D. A. Sychev
- Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
10
|
Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Ong CE. In vitro inhibitory effects of glucosamine, chondroitin and diacerein on human hepatic CYP2D6. Drug Metab Pers Ther 2021; 36:259-270. [PMID: 34821124 DOI: 10.1515/dmpt-2020-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6. METHODS CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking. RESULTS The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition. CONCLUSIONS Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Yan Pan
- Division of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Ong CE. In vitro inhibitory effects of glucosamine, chondroitin and diacerein on human hepatic CYP2D6. Drug Metab Pers Ther 2021; 0:dmdi-2020-0182. [PMID: 33831979 DOI: 10.1515/dmdi-2020-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6. METHODS CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking. RESULTS The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition. CONCLUSIONS Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Yan Pan
- Division of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Cyp2c44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. Proc Natl Acad Sci U S A 2020; 117:5923-5930. [PMID: 32123095 DOI: 10.1073/pnas.1921381117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Arachidonic acid epoxides generated by cytochrome P450 (CYP) enzymes have been linked to increased tumor growth and metastasis, largely on the basis of overexpression studies and the application of exogenous epoxides. Here we studied tumor growth and metastasis in Cyp2c44-/- mice crossed onto the polyoma middle T oncogene (PyMT) background. The resulting PyMT2c44 mice developed more primary tumors earlier than PyMT mice, with increased lymph and lung metastasis. Primary tumors from Cyp2c44-deficient mice contained higher numbers of tumor-associated macrophages, as well as more lymphatic endothelial cells than tumors from PyMT mice. While epoxide and diol levels were comparable in tumors from both genotypes, prostaglandin (PG) levels were higher in the PyMTΔ2c44 tumors. This could be accounted for by the finding that Cyp2c44 metabolized the PG precursor, PGH2 to 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), thus effectively reducing levels of effector PGs (including PGE2). Next, proteomic analyses revealed an up-regulation of WD repeating domain FYVE1 (WDFY1) in tumors from PyMTΔ2c44 mice, a phenomenon that was reproduced in Cyp2c44-deficient macrophages as well as by PGE2 Mechanistically, WDFY1 was involved in Toll-like receptor signaling, and its down-regulation in human monocytes attenuated the LPS-induced phosphorylation of IFN regulatory factor 3 and nuclear factor-κB. Taken together, our results indicate that Cyp2c44 protects against tumor growth and metastasis by preventing the synthesis of PGE2 The latter eicosanoid influenced macrophages at least in part by enhancing Toll-like receptor signaling via the up-regulation of WDFY1.
Collapse
|
13
|
Atypical Michaelis-Menten kinetics in cytochrome P450 enzymes: A focus on substrate inhibition. Biochem Pharmacol 2019; 169:113615. [DOI: 10.1016/j.bcp.2019.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
|
14
|
Önal A. Hastalığı modifiye eden antiromatizmal ilaçlarla etkileşimler bakımından analjezik ilaçların akılcı kullanımı. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.648718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Glass SM, Leddy SM, Orwin MC, Miller GP, Furge KA, Furge LL. Rolapitant Is a Reversible Inhibitor of CYP2D6. Drug Metab Dispos 2019; 47:567-573. [PMID: 30952677 DOI: 10.1124/dmd.118.085928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/25/2019] [Indexed: 11/22/2022] Open
Abstract
Rolapitant [(Varubi), 5S,8S)-8-[[(1R)-1-[3,5 bis(trifluoromethyl phenyl]ethoxy]methyl]-8-phenyl-1,7-diazaspiro[4.5]decan-2-one] is a high-affinity NK1 receptor antagonist that was approved in September 2015 as a treatment for nausea and vomiting caused by chemotherapy. In vivo rolapitant moderately inhibits CYP2D6 for at least 7 days after one 180 mg dose. Due to the long inhibition time, we investigated rolapitant as a possible mechanism-based inactivator of CYP2D6. Rolapitant docked in the active site of CYP2D6 and displayed type I binding to CYP2D6 with a K s value of 1.2 ± 0.4 µM. However, in NADPH-, time-, and concentration-dependent assays of CYP2D6 activity, no evidence for mechanism-based inactivation and no metabolites of rolapitant were observed. Stopped-flow binding studies yielded a kon /koff (K d) value of 6.2 µM. The IC50 value for rolapitant inhibition of CYP2D6 activity was 24 µM, suggesting that inhibition is not due to tight binding of rolapitant to CYP2D6. By Lineweaver-Burk analysis, rolapitant behaved as a mixed, reversible inhibitor. The K i values of 20 and 34 µM were determined by Dixon analysis, with bufuralol and dextromethorphan as reporter substrates, respectively, and drug-drug interaction modeling did not predict the reported in vivo inhibition. The interaction of rolapitant with CYP2D6 was also examined in 1 microsecond molecular dynamics simulations. Rolapitant adopted multiple low-energy binding conformations near the active site, but at distances not consistent with metabolism. Given these findings, we do not see evidence that rolapitant is a mechanism-based inactivator. Moreover, the reversible inhibition of CYP2D6 by rolapitant may not fully account for the moderate inhibition described in vivo.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Sabrina M Leddy
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Michael C Orwin
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Garret P Miller
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Kyle A Furge
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | |
Collapse
|
16
|
Cui M, Li C, Kong X, Zhang K, Liu Y, Hu Q, Ma Y, Li Y, Chen T. Influence of Flavonoids from Galium verum L. on the activities of cytochrome P450 isozymes and pharmacokinetic and pharmacodynamic of warfarin in rats. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_584_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|