Wheeler AM, Orsburn BC, Bumpus NN. Biotransformation of Efavirenz and Proteomic Analysis of Cytochrome P450s and UDP-Glucuronosyltransferases in Mouse, Macaque, and Human Brain-Derived In Vitro Systems.
Drug Metab Dispos 2023;
51:521-531. [PMID:
36623884 PMCID:
PMC10043944 DOI:
10.1124/dmd.122.001195]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.
Collapse