1
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Lees-Miller JP, Cobban A, Katsonis P, Bacolla A, Tsutakawa SE, Hammel M, Meek K, Anderson DW, Lichtarge O, Tainer JA, Lees-Miller SP. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:87-108. [PMID: 33035590 PMCID: PMC8021618 DOI: 10.1016/j.pbiomolbio.2020.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key member of the phosphatidylinositol-3 kinase-like (PIKK) family of protein kinases with critical roles in DNA-double strand break repair, transcription, metastasis, mitosis, RNA processing, and innate and adaptive immunity. The absence of DNA-PKcs from many model organisms has led to the assumption that DNA-PKcs is a vertebrate-specific PIKK. Here, we find that DNA-PKcs is widely distributed in invertebrates, fungi, plants, and protists, and that threonines 2609, 2638, and 2647 of the ABCDE cluster of phosphorylation sites are highly conserved amongst most Eukaryotes. Furthermore, we identify highly conserved amino acid sequence motifs and domains that are characteristic of DNA-PKcs relative to other PIKKs. These include residues in the Forehead domain and a novel motif we have termed YRPD, located in an α helix C-terminal to the ABCDE phosphorylation site loop. Combining sequence with biochemistry plus structural data on human DNA-PKcs unveils conserved sequence and conformational features with functional insights and implications. The defined generally progressive DNA-PKcs sequence diversification uncovers conserved functionality supported by Evolutionary Trace analysis, suggesting that for many organisms both functional sites and evolutionary pressures remain identical due to fundamental cell biology. The mining of cancer genomic data and germline mutations causing human inherited disease reveal that robust DNA-PKcs activity in tumors is detrimental to patient survival, whereas germline mutations compromising function are linked to severe immunodeficiency and neuronal degeneration. We anticipate that these collective results will enable ongoing DNA-PKcs functional analyses with biological and medical implications.
Collapse
Affiliation(s)
- James P Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Alexander Cobban
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, And Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Dave W Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
3
|
Structural insights into the role of DNA-PK as a master regulator in NHEJ. GENOME INSTABILITY & DISEASE 2021; 2:195-210. [PMID: 34723130 PMCID: PMC8549938 DOI: 10.1007/s42764-021-00047-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
DNA-dependent protein kinase catalytic subunit DNA-PKcs/PRKDC is the largest serine/threonine protein kinase of the phosphatidyl inositol 3-kinase-like protein kinase (PIKK) family and is the most highly expressed PIKK in human cells. With its DNA-binding partner Ku70/80, DNA-PKcs is required for regulated and efficient repair of ionizing radiation-induced DNA double-strand breaks via the non-homologous end joining (NHEJ) pathway. Loss of DNA-PKcs or other NHEJ factors leads to radiation sensitivity and unrepaired DNA double-strand breaks (DSBs), as well as defects in V(D)J recombination and immune defects. In this review, we highlight the contributions of the late Dr. Carl W. Anderson to the discovery and early characterization of DNA-PK. We furthermore build upon his foundational work to provide recent insights into the structure of NHEJ synaptic complexes, an evolutionarily conserved and functionally important YRPD motif, and the role of DNA-PKcs and its phosphorylation in NHEJ. The combined results identify DNA-PKcs as a master regulator that is activated by its detection of two double-strand DNA ends for a cascade of phosphorylation events that provide specificity and efficiency in assembling the synaptic complex for NHEJ.
Collapse
|
4
|
A pathway linking translation stress to checkpoint kinase 2 signaling in Neurospora crassa. Proc Natl Acad Sci U S A 2019; 116:17271-17279. [PMID: 31413202 PMCID: PMC6717302 DOI: 10.1073/pnas.1815396116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR) pathway and its activation mechanism is evolutionarily conserved. We show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of an additional signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by an upstream kinase distinct from those of the DDR pathway. We present evidence that the activating kinase is mTOR. Translation stress is sensed via a decrease in levels of an unstable inhibitor that antagonizes phosphorylation of PRD-4. Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence, Neurospora mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.
Collapse
|
5
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
6
|
The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:194-205. [PMID: 25550082 DOI: 10.1016/j.pbiomolbio.2014.12.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes.
Collapse
|
7
|
Burton P, McBride DJ, Wilkes JM, Barry JD, McCulloch R. Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology. EUKARYOTIC CELL 2007; 6:1773-81. [PMID: 17693593 PMCID: PMC2043400 DOI: 10.1128/ec.00212-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA double-strand breaks (DSBs) are repaired primarily by two distinct pathways: homologous recombination and nonhomologous end joining (NHEJ). NHEJ has been found in all eukaryotes examined to date and has been described recently for some bacterial species, illustrating its ancestry. Trypanosoma brucei is a divergent eukaryotic protist that evades host immunity by antigenic variation, a process in which homologous recombination plays a crucial function. While homologous recombination has been examined in some detail in T. brucei, little work has been done to examine what other DSB repair pathways the parasite utilizes. Here we show that T. brucei cell extracts support the end joining of linear DNA molecules. These reactions are independent of the Ku heterodimer, indicating that they are distinct from NHEJ, and are guided by sequence microhomology. We also demonstrate bioinformatically that T. brucei, in common with other kinetoplastids, does not encode recognizable homologues of DNA ligase IV or XRCC4, suggesting that NHEJ is either absent or mechanistically diverged in these pathogens.
Collapse
Affiliation(s)
- Peter Burton
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
8
|
Palmbos PL, Daley JM, Wilson TE. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol Cell Biol 2005; 25:10782-90. [PMID: 16314503 PMCID: PMC1316971 DOI: 10.1128/mcb.25.24.10782-10790.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 08/18/2005] [Accepted: 09/23/2005] [Indexed: 01/01/2023] Open
Abstract
The nonhomologous end-joining (NHEJ) pathway of DNA double-strand break repair requires three protein complexes in Saccharomyces cerevisiae: MRX (Mre11-Rad50-Xrs2), Ku (Ku70-Ku80), and DNA ligase IV (Dnl4-Lif1-Nej1). Much is known about the interactions that mediate the formation of each complex, but little is known about how they act together during repair. A comprehensive yeast two-hybrid screen of the NHEJ factors of S. cerevisiae revealed all known interactions within the MRX, Ku, and DNA ligase IV complexes, as well as three additional, weaker interactions between Yku80-Dnl4, Xrs2-Lif1, and Mre11-Yku80. Individual and combined deletions of the Yku80 C terminus and the Xrs2 forkhead-associated (FHA) domain were designed based on the latter two-hybrid results. These deletions synergistically blocked NHEJ but not the telomere and recombination functions of Ku and MRX, confirming that these protein regions are functionally important specifically for NHEJ. Further mutational analysis of Yku80 identified a putative C-terminal amphipathic alpha-helix that is both required for its NHEJ function and strikingly similar to a DNA-dependent protein kinase interaction motif in human Ku80. These results identify a novel role in yeast NHEJ for the poorly characterized Ku80 C-terminal and Xrs2 FHA domains, and they suggest that redundant binding of DNA ligase IV facilitates completion of this DNA repair event.
Collapse
Affiliation(s)
- Phillip L Palmbos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, 48109-0602, USA
| | | | | |
Collapse
|
9
|
Bonatto D, Brendel M, Henriques JAP. In silico Identification and Analysis of New Artemis/Artemis-like Sequences from Fungal and Metazoan Species. Protein J 2005; 24:399-411. [PMID: 16323046 DOI: 10.1007/s10930-005-7594-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Indexed: 02/01/2023]
Abstract
The Artemis Group comprises mammalian proteins with important functions in the repair of ionizing radiation-induced DNA double-strand breaks and in the cleavage of DNA hairpin extremities generated during V(D)J recombination. Little is known about the presence of Artemis/Artemis-like proteins in non-mammalian species. We have characterized new Artemis/Artemis-like sequences from the genomes of some fungi and from non-mammalian metazoan species. An in-depth phylogenetic analysis of these new Artemis/Artemis-like sequences showed that they form a distinct clade within the Pso2p/Snm1p A and B Groups. Hydrophobic cluster analysis and three-dimensional modeling allowed to map and to compare conserved regions in these Artemis/Artemis-like proteins. The results indicate that Artemis probably belongs to an ancient DNA recombination mechanism that diversified with the evolution of multi-cellular eukaryotic lineage.
Collapse
Affiliation(s)
- Diego Bonatto
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91507-970, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
10
|
Abstract
Antigen receptor genes exist in the germline in a "split" configuration and are assembled in developing B and T lymphocytes by V(D)J recombination. This site-specific recombination reaction is initiated by a complex containing the RAG1 and RAG2 proteins and completed by general DNA repair factors. RAG1 and RAG2, like the adaptive immune system itself, are found exclusively in jawed vertebrates, and are thought to have entered the vertebrate genome by horizontal transmission as components of a transposable element. This review discusses the structure of antigen receptor genes and the mechanisms by which they are assembled and diversified, and then goes on to consider the evolutionary implications of the arrival of the hypothetical "RAG transposon".
Collapse
Affiliation(s)
- David G Schatz
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Melnikova L, Biessmann H, Georgiev P. The Ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 2005; 170:221-35. [PMID: 15781709 PMCID: PMC1449706 DOI: 10.1534/genetics.104.034538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chromosome ends in Drosophila melanogaster can be elongated either by terminal attachment of the telomere-specific retrotransposons HeT-A and TART or by terminal gene conversion. Here we show that a decrease in Ku70 or Ku80 gene dosage causes a sharp increase in the frequency of HeT-A and TART attachments to a broken chromosome end and in terminal DNA elongation by gene conversion. Loss of Ku80 has more pronounced effects than loss of Ku70. However, lower Ku70 concentration reduces the stability of terminally deficient chromosomes. Our results suggest a role of the end-binding Ku complex in the accessibility and length regulation of Drosophila telomeres.
Collapse
|
12
|
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307:1098-101. [PMID: 15718470 DOI: 10.1126/science.1106148] [Citation(s) in RCA: 5139] [Impact Index Per Article: 270.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deregulation of Akt/protein kinase B (PKB) is implicated in the pathogenesis of cancer and diabetes. Akt/PKB activation requires the phosphorylation of Thr308 in the activation loop by the phosphoinositide-dependent kinase 1 (PDK1) and Ser473 within the carboxyl-terminal hydrophobic motif by an unknown kinase. We show that in Drosophila and human cells the target of rapamycin (TOR) kinase and its associated protein rictor are necessary for Ser473 phosphorylation and that a reduction in rictor or mammalian TOR (mTOR) expression inhibited an Akt/PKB effector. The rictor-mTOR complex directly phosphorylated Akt/PKB on Ser473 in vitro and facilitated Thr308 phosphorylation by PDK1. Rictor-mTOR may serve as a drug target in tumors that have lost the expression of PTEN, a tumor suppressor that opposes Akt/PKB activation.
Collapse
Affiliation(s)
- D D Sarbassov
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|