1
|
Galati E, Bosio MC, Novarina D, Chiara M, Bernini GM, Mozzarelli AM, García-Rubio ML, Gómez-González B, Aguilera A, Carzaniga T, Todisco M, Bellini T, Nava GM, Frigè G, Sertic S, Horner DS, Baryshnikova A, Manzari C, D'Erchia AM, Pesole G, Brown GW, Muzi-Falconi M, Lazzaro F. VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 2021; 49:12785-12804. [PMID: 34871443 PMCID: PMC8682794 DOI: 10.1093/nar/gkab1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.
Collapse
Affiliation(s)
- Elena Galati
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria C Bosio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Daniele Novarina
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Giulia M Bernini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alessandro M Mozzarelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Marco Todisco
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giulia M Nava
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - David S Horner
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anastasia Baryshnikova
- Department of Molecular Genetics and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Caterina Manzari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna M D'Erchia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Ontario M5S 3E1, Toronto, Canada
| | - Marco Muzi-Falconi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Federico Lazzaro
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
2
|
Meroni A, Nava GM, Bianco E, Grasso L, Galati E, Bosio MC, Delmastro D, Muzi-Falconi M, Lazzaro F. RNase H activities counteract a toxic effect of Polymerase η in cells replicating with depleted dNTP pools. Nucleic Acids Res 2019; 47:4612-4623. [PMID: 30847483 PMCID: PMC6511917 DOI: 10.1093/nar/gkz165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 01/27/2023] Open
Abstract
RNA:DNA hybrids are transient physiological intermediates that arise during several cellular processes such as DNA replication. In pathological situations, they may stably accumulate and pose a threat to genome integrity. Cellular RNase H activities process these structures to restore the correct DNA:DNA sequence. Yeast cells lacking RNase H are negatively affected by depletion of deoxyribonucleotide pools necessary for DNA replication. Here we show that the translesion synthesis DNA polymerase η (Pol η) plays a role in DNA replication under low deoxyribonucleotides condition triggered by hydroxyurea. In particular, the catalytic reaction performed by Pol η is detrimental for RNase H deficient cells, causing DNA damage checkpoint activation and G2/M arrest. Moreover, a Pol η mutant allele with enhanced ribonucleotide incorporation further exacerbates the sensitivity to hydroxyurea of cells lacking RNase H activities. Our data are compatible with a model in which Pol η activity facilitates the formation or stabilization of RNA:DNA hybrids at stalled replication forks. However, in a scenario where RNase H activity fails to restore DNA, these hybrids become highly toxic for cells.
Collapse
Affiliation(s)
- Alice Meroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Giulia Maria Nava
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Eliana Bianco
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Lavinia Grasso
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Maria Cristina Bosio
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Daria Delmastro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
3
|
Coordinated Activity of Y Family TLS Polymerases and EXO1 Protects Non-S Phase Cells from UV-Induced Cytotoxic Lesions. Mol Cell 2018; 70:34-47.e4. [PMID: 29551515 DOI: 10.1016/j.molcel.2018.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 11/23/2022]
Abstract
UV-induced photoproducts are responsible for the pathological effects of sunlight. Mutations in nucleotide excision repair (NER) cause severe pathologies characterized by sunlight sensitivity, coupled to elevated predisposition to cancer and/or neurological dysfunctions. We have previously shown that in UV-irradiated non-cycling cells, only a particular subset of lesions activates the DNA damage response (DDR), and this requires NER and EXO1 activities. To define the molecular mechanism acting at these lesions, we demonstrate that Y family TLS polymerases are recruited at NER- and EXO1-positive lesion sites in non-S phase cells. The coordinated action of EXO1 and Y family TLS polymerases promotes checkpoint activation, leads to lesion repair, and is crucial to prevent cytotoxic double-strand break (DSB) formation.
Collapse
|
4
|
Multifunctional role of ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere maintenance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787404. [PMID: 25247188 PMCID: PMC4163350 DOI: 10.1155/2014/787404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development.
Collapse
|
5
|
Becerra SC, Thambugala HT, Erickson AR, Lee CK, Lewis LK. Reversibility of replicative senescence in Saccharomyces cerevisiae: effect of homologous recombination and cell cycle checkpoints. DNA Repair (Amst) 2011; 11:35-45. [PMID: 22071150 DOI: 10.1016/j.dnarep.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Primary human somatic cells grown in culture divide a finite number of times, exhibiting progressive changes in metabolism and morphology before cessation of cycling. This telomere-initiated cellular senescence occurs because cells have halted production of telomerase, a DNA polymerase required for stabilization of chromosome ends. Telomerase-deficient Saccharomyces cerevisiae cells undergo a similar process, with most cells arresting growth after approximately 60 generations. In the current study we demonstrate that senescence is largely reversible. Reactivation of telomerase (EST2) expression in the growth-arrested cells led to resumption of cycling and reversal of senescent cell characteristics. Rescue was also observed after mating of senescent haploid cells with telomerase-proficient cells to form stable diploids. Although senescence was reversible in DNA damage checkpoint response mutants (mec3 and/or rad24 cells), survival of recombination-defective rad52 mutants remained low after telomerase reactivation. Telomere lengths in rescued est2 cells were initially half those of wildtype cells, but could be restored to normal by propagation for ∼70 generations in the presence of telomerase. These results place limitations on possible models for senescence and indicate that most cells, despite gross morphological changes and short, resected telomeres, do not experience lethal DNA damage and become irreversibly committed to death.
Collapse
Affiliation(s)
- Sandra C Becerra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | | | | | | | |
Collapse
|
6
|
Lagerwerf S, Vrouwe MG, Overmeer RM, Fousteri MI, Mullenders LHF. DNA damage response and transcription. DNA Repair (Amst) 2011; 10:743-50. [PMID: 21622031 DOI: 10.1016/j.dnarep.2011.04.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A network of DNA damage surveillance systems is triggered by sensing of DNA lesions and the initiation of a signal transduction cascade that activates genome-protection pathways including nucleotide excision repair (NER). NER operates through coordinated assembly of repair factors into pre- and post-incision complexes. Recent work identifies RPA as a key regulator of the transition from dual incision to repair-synthesis in UV-irradiated non-cycling cells, thereby averting the generation of unprocessed repair intermediates. These intermediates could lead to recombinogenic events and trigger a persistent ATR-dependent checkpoint signaling. It is now evident that DNA damage signaling is not limited to NER proficient cells. ATR-dependent checkpoint activation also occurs in UV-exposed non-cycling repair deficient cells coinciding with the formation of endonuclease APE1-mediated DNA strand breaks. In addition, the encounter of elongating RNA polymerase II (RNAPIIo) with DNA damage lesions and its persistent stalling provides a strong DNA damage signaling leading to cell cycle arrest, apoptosis and increased mutagenesis. The mechanism underlying the strong and strand specific induction of UV-induced mutations in NER deficient cells has been recently resolved by the finding that gene transcription itself increases UV-induced mutagenesis in a strand specific manner via increased deamination of cytosines. The cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER) without displacement of the DNA damage stalled RNAPIIo. Deficiency in TC-NER associates with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). CSB functions as a repair coupling factor to attract NER proteins, chromatin remodelers and the CSA-E3-ubiquitin ligase complex to the stalled RNAPIIo; CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The molecular mechanisms by which these proteins bring about efficient TC-NER and trigger signaling after transcription arrest remain elusive; particularly the role of chromatin remodeling in TC-NER needs to be clarified in the context of anticipated structural changes that allow repair and transcription restart.
Collapse
Affiliation(s)
- Saskia Lagerwerf
- Department of Toxicogenetics, Leiden University Medical Center, 2333 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Novarina D, Amara F, Lazzaro F, Plevani P, Muzi-Falconi M. Mind the gap: keeping UV lesions in check. DNA Repair (Amst) 2011; 10:751-9. [PMID: 21602108 PMCID: PMC3171152 DOI: 10.1016/j.dnarep.2011.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cells respond to genotoxic insults by triggering a DNA damage checkpoint surveillance mechanism and by activating repair pathways. Recent findings indicate that the two processes are more related than originally thought. Here we discuss the mechanisms involved in responding to UV-induced lesions in different phases of the cell cycle and summarize the most recent data in a model where Nucleotide Excision Repair (NER) and exonucleolytic activities act in sequence leading to checkpoint activation in non replicating cells. The critical trigger is likely represented by problematic intermediates that cannot be completely or efficiently repaired by NER. In S phase cells, on the other hand, the replicative polymerases, blocked by bulky UV lesions, re-initiate DNA synthesis downstream of the lesions, leaving behind a ssDNA tract. If these gaps are not rapidly refilled, checkpoint kinases will be activated.
Collapse
Affiliation(s)
- Daniele Novarina
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano. Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
8
|
Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LHF. UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 2011; 124:435-46. [PMID: 21224401 DOI: 10.1242/jcs.075325] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition of cell cycle progression upon release from G0 phase. In the absence of repair, UV-induced checkpoint activation coincides with the formation of single-strand DNA breaks by the action of the endonuclease Ape1. Although temporally distinct, activation of checkpoint proteins in NER-proficient and NER-deficient cells depends on a common pathway involving the ATR kinase. These data reveal that damage signaling in non-dividing cells proceeds via NER-dependent and NER-independent processing of UV photolesions through generation of DNA strand breaks, ultimately preventing the transition from G1 to S phase.
Collapse
Affiliation(s)
- Mischa G Vrouwe
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Bomgarden RD, Lupardus PJ, Soni DV, Yee MC, Ford JM, Cimprich KA. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J 2006; 25:2605-14. [PMID: 16675950 PMCID: PMC1478198 DOI: 10.1038/sj.emboj.7601123] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 04/07/2006] [Indexed: 11/08/2022] Open
Abstract
An essential component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-activating structure is single-stranded DNA. It has been suggested that nucleotide excision repair (NER) can lead to activation of ATR by generating such a signal, and in yeast, DNA damage processing through the NER pathway is necessary for checkpoint activation during G1. We show here that ultraviolet (UV) radiation-induced ATR signaling is compromised in XPA-deficient human cells during S phase, as shown by defects in ATRIP (ATR-interacting protein) translocation to sites of UV damage, UV-induced phosphorylation of Chk1 and UV-induced replication protein A phosphorylation and chromatin binding. However, ATR signaling was not compromised in XPC-, CSB-, XPF- and XPG-deficient cells. These results indicate that damage processing is not necessary for ATR-mediated S-phase checkpoint activation and that the lesion recognition function of XPA may be sufficient. In contrast, XP-V cells deficient in the UV bypass polymerase eta exhibited enhanced ATR signaling. Taken together, these results suggest that lesion bypass and not lesion repair may raise the level of UV damage that can be tolerated before checkpoint activation, and that XPA plays a critical role in this activation.
Collapse
Affiliation(s)
- Ryan D Bomgarden
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Patrick J Lupardus
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Deena V Soni
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Muh-Ching Yee
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - James M Ford
- Departments of Medicine and Genetics, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
- Department of Molecular Pharmacology, CCSR, Stanford University School of Medicine, 269 Campus Drive, Rm 3215a Stanford, CA 94305-5174, USA. Tel.: +1 650 498 4720; Fax: +1 650 725 4665; E-mail:
| |
Collapse
|
10
|
Jiang G, Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol Cell Biol 2006; 26:39-49. [PMID: 16354678 PMCID: PMC1317637 DOI: 10.1128/mcb.26.1.39-49.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a chromatin immunoprecipitation method for analyzing the binding of repair and checkpoint proteins to DNA base lesions in any region of the human genome. Using this method, we investigated the recruitment of DNA damage checkpoint proteins RPA, Rad9, and ATR to base damage induced by UV and acetoxyacetylaminofluorene in transcribed and nontranscribed regions in wild-type and excision repair-deficient human cells in G1 and S phases of the cell cycle. We find that all 3 damage sensors tested assemble at the site or in the vicinity of damage in the absence of DNA replication or repair and that transcription enhances recruitment of checkpoint proteins to the damage site. Furthermore, we find that UV irradiation of human cells defective in excision repair leads to phosphorylation of Chk1 kinase in both G1 and S phase of the cell cycle, suggesting that primary DNA lesions as well as stalled transcription complexes may act as signals to initiate the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Biochemistry and Biophysics, Mary Ellen Jones Building CB 7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
11
|
Current awareness on yeast. Yeast 2005; 22:503-10. [PMID: 15918233 DOI: 10.1002/yea.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|