1
|
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet 2021; 17:e1009972. [PMID: 34936656 PMCID: PMC8735627 DOI: 10.1371/journal.pgen.1009972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.
Collapse
|
2
|
Vila Nova M, Durimel K, La K, Felten A, Bessières P, Mistou MY, Mariadassou M, Radomski N. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics 2019; 20:814. [PMID: 31694533 PMCID: PMC6836353 DOI: 10.1186/s12864-019-6188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of 440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the pangenomic mutations associated to animal sources (iv). RESULTS Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130 accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52 genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and fish sources by GWAS and GOEA, respectively. CONCLUSIONS Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection of livestock.
Collapse
Affiliation(s)
- Meryl Vila Nova
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Kévin Durimel
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Kévin La
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Philippe Bessières
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Mahendra Mariadassou
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Radomski
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France.
| |
Collapse
|
3
|
Selection-Enhanced Mutagenesis of lac Genes Is Due to Their Coamplification with dinB Encoding an Error-Prone DNA Polymerase. Genetics 2018; 208:1009-1021. [PMID: 29301907 DOI: 10.1534/genetics.117.300409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
To test whether growth limitation induces mutations, Cairns and Foster constructed an Escherichia coli strain whose mutant lac allele provides 1-2% of normal ability to use lactose. This strain cannot grow on lactose, but produces ∼50 Lac+ revertant colonies per 108 plated cells over 5 days. About 80% of revertants carry a stable lac+ mutation made by the error-prone DinB polymerase, which may be induced during growth limitation; 10% of Lac+ revertants are stable but form without DinB; and the remaining 10% grow by amplifying their mutant lac allele and are unstably Lac+ Induced DinB mutagenesis has been explained in two ways: (1) upregulation of dinB expression in nongrowing cells ("stress-induced mutagenesis") or (2) selected local overreplication of the lac and dinB+ genes on lactose medium (selected amplification) in cells that are not dividing. Transcription of dinB is necessary but not sufficient for mutagenesis. Evidence is presented that DinB enhances reversion only when encoded somewhere on the F'lac plasmid that carries the mutant lac gene. A new model will propose that rare preexisting cells (1 in a 1000) have ∼10 copies of the F'lac plasmid, providing them with enough energy to divide, mate, and overreplicate their F'lac plasmid under selective conditions. In these clones, repeated replication of F'lac in nondividing cells directs opportunities for lac reversion and increases the copy number of the dinB+ gene. Amplification of dinB+ increases the error rate of replication and increases the number of lac+ revertants. Thus, reversion is enhanced in nondividing cells not by stress-induced mutagenesis, but by selected coamplification of the dinB and lac genes, both of which happen to lie on the F'lac plasmid.
Collapse
|
4
|
Limudomporn P, Moonsom S, Leartsakulpanich U, Suntornthiticharoen P, Petmitr S, Weinfeld M, Chavalitshewinkoon-Petmitr P. Characterization of Plasmodium falciparum ATP-dependent DNA helicase RuvB3. Malar J 2016; 15:526. [PMID: 27809838 PMCID: PMC5093981 DOI: 10.1186/s12936-016-1573-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious and widespread parasitic diseases affecting humans. Because of the spread of resistance in both parasites and the mosquito vectors to anti-malarial drugs and insecticides, controlling the spread of malaria is becoming difficult. Thus, identifying new drug targets is urgently needed. Helicases play key roles in a wide range of cellular activities involving DNA and RNA transactions, making them attractive anti-malarial drug targets. METHODS ATP-dependent DNA helicase gene (PfRuvB3) of Plasmodium falciparum strain K1, a chloroquine and pyrimethamine-resistant strain, was inserted into pQE-TriSystem His-Strep 2 vector, heterologously expressed and affinity purified. Identity of recombinant PfRuvB3 was confirmed by western blotting coupled with tandem mass spectrometry. Helicase and ATPase activities were characterized as well as co-factors required for optimal function. RESULTS Recombinant PfRuvB3 has molecular size of 59 kDa, showing both DNA helicase and ATPase activities. Its helicase activity is dependent on divalent cations (Cu2+, Mg2+, Ni+2 or Zn+2) and ATP or dATP but is inhibited by high NaCl concentration (>100 mM). PfPuvB3 is unable to act on blunt-ended duplex DNA, but manifests ATPase activity in the presence of either single- or double-stranded DNA. PfRuvB3.is inhibited by doxorubicin, daunorubicin and netropsin, known DNA helicase inhibitors. CONCLUSIONS Purified recombinant PfRuvB3 contains both DNA helicase and ATPase activities. Differences in properties of RuvB between the malaria parasite obtained from the study and human host provide an avenue leading to the development of novel drugs targeting specifically the malaria form of RuvB family of DNA helicases.
Collapse
Affiliation(s)
- Paviga Limudomporn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pahonyothin Rd, Pathumthani, 12120, Thailand
| | - Pattra Suntornthiticharoen
- Department of Biomedical Sciences, Faculty of Science, Rangsit University, Lak Hok, Pathumthani, 12000, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | | |
Collapse
|
5
|
Morgado G, Gerngross D, Roberts TM, Panke S. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:117-146. [PMID: 27757475 DOI: 10.1007/10_2016_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Collapse
Affiliation(s)
- Gaspar Morgado
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania M Roberts
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
6
|
Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015; 34:44-59. [PMID: 26707540 DOI: 10.1016/j.ymben.2015.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/29/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
8
|
Maisnier-Patin S, Roth JR. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation). Cold Spring Harb Perspect Biol 2015; 7:a018176. [PMID: 26134316 PMCID: PMC4484973 DOI: 10.1101/cshperspect.a018176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac(+)) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F'lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F'lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac(+) triggers exponential cell growth leading to a stable Lac(+) revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac(+) colony. Cells with multiple copies of the F'lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac(+) revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns-Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| | - John R Roth
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| |
Collapse
|
9
|
Garcia-Gonzalez A, Vicens L, Alicea M, Massey SE. The distribution of recombination repair genes is linked to information content in bacteria. Gene 2013; 528:295-303. [PMID: 23796800 DOI: 10.1016/j.gene.2013.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/28/2013] [Indexed: 01/07/2023]
Abstract
The concept of a 'proteomic constraint' proposes that the information content of the proteome exerts a selective pressure to reduce mutation rates, implying that larger proteomes produce a greater selective pressure to evolve or maintain DNA repair, resulting in a decrease in mutational load. Here, the distribution of 21 recombination repair genes was characterized across 900 bacterial genomes. Consistent with prediction, the presence of 17 genes correlated with proteome size. Intracellular bacteria were marked by a pervasive absence of recombination repair genes, consistent with their small proteome sizes, but also consistent with alternative explanations that reduced effective population size or lack of recombination may decrease selection pressure. However, when only non-intracellular bacteria were examined, the relationship between proteome size and gene presence was maintained. In addition, the more widely distributed (i.e. conserved) a gene, the smaller the average size of the proteomes from which it was absent. Together, these observations are consistent with the operation of a proteomic constraint on DNA repair. Lastly, a correlation between gene absence and genome AT content was shown, indicating a link between absence of DNA repair and elevated genome AT content.
Collapse
Affiliation(s)
- A Garcia-Gonzalez
- Department of Biology, PO Box 23360, University of Puerto Rico - Rio Piedras, San Juan 00931, Puerto Rico
| | | | | | | |
Collapse
|
10
|
Jeong J, Cho N, Jung D, Bang D. Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 2013; 31:804-10. [PMID: 23624241 DOI: 10.1016/j.biotechadv.2013.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 12/23/2022]
Abstract
Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces recent advances in genome engineering technologies applied to Escherichia coli as well as multiplex automated genome engineering (MAGE), a recent technique proposed as a powerful toolkit due to its straightforward process, rapid experimental procedures, and highly efficient properties.
Collapse
Affiliation(s)
- Jaehwan Jeong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Abstract
Mutations stimulate evolutionary change and lead to birth defects and cancer in humans as well as to antibiotic resistance in bacteria. According to the classic view, most mutations arise in dividing cells and result from uncorrected errors of S-phase DNA replication, which is highly accurate because of the involvement of selective DNA polymerases and efficient error-correcting mechanisms. In contrast, studies in bacteria and yeast reveal that DNA synthesis associated with repair of double-strand chromosomal breaks (DSBs) by homologous recombination is highly inaccurate, thus making DSBs and their repair an important source of mutations. Different error-prone mechanisms appear to operate in different repair scenarios. In the filling in of single-stranded DNA regions, error-prone translesion DNA polymerases appear to produce most errors. In contrast, in gene conversion gap repair and in break-induced replication, errors are independent of translesion polymerases, and many mutations have the signatures of template switching during DNA repair synthesis. DNA repair also appears to create complex copy-number variants. Overall, homologous recombination, which is traditionally considered a safe pathway of DSB repair, is an important source of mutagenesis that may contribute to human disease and evolution.
Collapse
Affiliation(s)
- Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana 46202-5132, USA.
| | | |
Collapse
|
12
|
Al Mamun AAM, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 2012; 338:1344-8. [PMID: 23224554 PMCID: PMC3782309 DOI: 10.1126/science.1226683] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanisms of DNA repair and mutagenesis are defined on the basis of relatively few proteins acting on DNA, yet the identities and functions of all proteins required are unknown. Here, we identify the network that underlies mutagenic repair of DNA breaks in stressed Escherichia coli and define functions for much of it. Using a comprehensive screen, we identified a network of ≥93 genes that function in mutation. Most operate upstream of activation of three required stress responses (RpoS, RpoE, and SOS, key network hubs), apparently sensing stress. The results reveal how a network integrates mutagenic repair into the biology of the cell, show specific pathways of environmental sensing, demonstrate the centrality of stress responses, and imply that these responses are attractive as potential drug targets for blocking the evolution of pathogens.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Andreas M. Lisewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Claude Saint-Ruf
- U1001 INSERM, Université Paris, Descartes, Sorbonne Paris cité, site Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ryan L. Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
14
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|
15
|
Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A. Break-induced replication is highly inaccurate. PLoS Biol 2011; 9:e1000594. [PMID: 21347245 PMCID: PMC3039667 DOI: 10.1371/journal.pbio.1000594] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 01/04/2011] [Indexed: 02/05/2023] Open
Abstract
DNA replication initiated by one-ended homologous recombination at a double-strand break is highly inaccurate, as it greatly stimulates frameshift mutations over the entire path of the replication fork. DNA must be synthesized for purposes of genome duplication and DNA repair. While the former is a highly accurate process, short-patch synthesis associated with repair of DNA damage is often error-prone. Break-induced replication (BIR) is a unique cellular process that mimics normal DNA replication in its processivity, rate, and capacity to duplicate hundreds of kilobases, but is initiated at double-strand breaks (DSBs) rather than at replication origins. Here we employed a series of frameshift reporters to measure mutagenesis associated with BIR in Saccharomyces cerevisiae. We demonstrate that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2,800-fold higher than during normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. We established that polymerase proofreading and mismatch repair correct BIR errors. Also, dNTP levels were elevated during BIR, and this contributed to BIR-related mutagenesis. We propose that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR, with Pol δ generating many of the mutagenic errors. We further postulate that activation of BIR in eukaryotic cells may significantly contribute to accumulation of mutations that fuel cancer and evolution. Accurate transmission of genetic information requires the precise replication of parental DNA. Mutations (which can be beneficial or deleterious) arise from errors that remain uncorrected. DNA replication occurs during S-phase of the cell cycle and is extremely accurate due to highly selective DNA polymerases coupled with effective error-correction mechanisms. In contrast, DNA synthesis associated with short-patch DNA repair is often error-prone. Break-induced replication (BIR) presents an interesting case of large-scale DNA duplication that occurs in the context of DNA repair. In this study we employed a yeast-based system to investigate the level of mutagenesis associated with BIR compared to mutagenesis during normal DNA replication. We report that frameshifts, which are the most deleterious kind of point mutation, are much more frequent during BIR than during normal DNA replication. Surprisingly, we observed that the majority of mutations associated with BIR were created by polymerases responsible for normal DNA replication, which are assumed to be highly precise. Overall, we propose that BIR is a novel source of mutagenesis that may contribute to disease genesis and evolution.
Collapse
Affiliation(s)
- Angela Deem
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Andrea Keszthelyi
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Tiffany Blackgrove
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Alexandra Vayl
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Barbara Coffey
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Ruchi Mathur
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol 2010; 193:660-9. [PMID: 21131491 DOI: 10.1128/jb.01166-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, RpoS, the general stress response sigma factor, regulates the activity of the specialized DNA polymerase DNA polymerase IV (Pol IV) both in stationary-phase and in exponential-phase cells. Because during exponential phase dinB, the gene encoding Pol IV, is transcribed independently of RpoS, RpoS must regulate Pol IV activity in growing cells indirectly via one or more intermediate factors. The results presented here show that one of these intermediate factors is SbcCD, an SMC-like protein and an ATP-dependent nuclease. By initiating or participating in double-strand break repair, SbcCD may provide DNA substrates for Pol IV polymerase activity.
Collapse
|
17
|
Persson Ö, Nyström T, Farewell A. UspB, a member of the sigma-S regulon, facilitates RuvC resolvase function. DNA Repair (Amst) 2010; 9:1162-9. [DOI: 10.1016/j.dnarep.2010.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
18
|
Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J Bacteriol 2010; 192:4694-700. [PMID: 20639336 DOI: 10.1128/jb.00570-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work showed that about 85% of stress-induced mutations associated with DNA double-strand break repair in carbon-starved Escherichia coli result from error-prone DNA polymerase IV (Pol IV) (DinB) and that the mutagenesis is controlled by the RpoS stress response, which upregulates dinB. We report that the remaining mutagenesis requires high-fidelity Pol II, and that this component also requires RpoS. The results identify a second DNA polymerase contributing to stress-induced mutagenesis and show that RpoS promotes mutagenesis by more than the simple upregulation of dinB.
Collapse
|
19
|
Kivisaar M. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett 2010; 312:1-14. [DOI: 10.1111/j.1574-6968.2010.02027.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
20
|
Hastings PJ, Hersh MN, Thornton PC, Fonville NC, Slack A, Frisch RL, Ray MP, Harris RS, Leal SM, Rosenberg SM. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS One 2010; 5:e10862. [PMID: 20523737 PMCID: PMC2877720 DOI: 10.1371/journal.pone.0010862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli. Genetics 2009; 182:55-68. [PMID: 19270270 DOI: 10.1534/genetics.109.100735] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(o(c)) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(o(c)) alleles fully suppress the phenotype of constitutively SOS-"off" lexA(Ind(-)) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(o(c)) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition.
Collapse
|
22
|
Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 2008; 4:e1000264. [PMID: 19023402 PMCID: PMC2577886 DOI: 10.1371/journal.pgen.1000264] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
The major DNA repair pathways operate on damage in double-strand DNA because they use the intact strand as a template after damage removal. Therefore, lesions in transient single-strand stretches of chromosomal DNA are expected to be especially threatening to genome stability. To test this hypothesis, we designed systems in budding yeast that could generate many kilobases of persistent single-strand DNA next to double-strand breaks or uncapped telomeres. The systems allowed controlled restoration to the double-strand state after applying DNA damage. We found that lesions induced by UV-light and methyl methanesulfonate can be tolerated in long single-strand regions and are hypermutagenic. The hypermutability required PCNA monoubiquitination and was largely attributable to translesion synthesis by the error-prone DNA polymerase ζ. In support of multiple lesions in single-strand DNA being a source of hypermutability, analysis of the UV-induced mutants revealed strong strand-specific bias and unexpectedly high frequency of alleles with widely separated multiple mutations scattered over several kilobases. Hypermutability and multiple mutations associated with lesions in transient stretches of long single-strand DNA may be a source of carcinogenesis and provide selective advantage in adaptive evolution. A variety of error avoidance mechanisms assure low mutation rates across the genome. Genetic defects in DNA replication or repair can lead to genome-wide increase in mutation frequency that may result in cancer predisposition and genetic disease. Transient localized hypermutability drastically differs in its biological consequences from genome-wide mutators. Since genome-wide hypermutability can cause reduced fitness due to accumulation of dysfunctional alleles, mutators are under negative selection pressure. By contrast, there would be less selection against temporary hypermutability within limited genomic regions, suggesting a special role in adaptive evolution and carcinogenesis. Mechanisms of transient hypermutability are poorly understood. Long stretches of single-strand DNA have been implicated but not demonstrated as a source of localized transient hypermutability. Using sophisticated yeast genetic systems that we developed, we found that transient stretches of chromosomal single-strand DNA at double-strand breaks and that telomeres can tolerate multiple lesions and are highly prone to damage-induced mutations, including a very unusual class of widely spaced multiple mutations. The hypermutability relied on error prone translesion DNA synthesis. Our work demonstrates a simple in vivo mechanism for localized transient hypermutability extending over several kilobases that can result in widely spaced multiple mutations without severe mutation load in the rest of the genome.
Collapse
Affiliation(s)
- Yong Yang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Joan Sterling
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Francesca Storici
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
- * E-mail: (MAR); (DAG)
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
- * E-mail: (MAR); (DAG)
| |
Collapse
|
23
|
Ramírez-Santos J, García-Mata V, Poggio S, Camarena L, Gómez-Eichelmann MC. Role of single-strand DNA 3′-5′ exonuclease ExoI and nuclease SbcCD in stationary-phase mutation in Escherichia coli K-12. Arch Microbiol 2008; 191:185-90. [DOI: 10.1007/s00203-008-0441-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/02/2008] [Accepted: 10/13/2008] [Indexed: 12/01/2022]
|
24
|
Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 2008; 191:506-13. [PMID: 19011023 DOI: 10.1128/jb.01210-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies showed that a Bacillus subtilis strain deficient in mismatch repair (MMR; encoded by the mutSL operon) promoted the production of stationary-phase-induced mutations. However, overexpression of the mutSL operon did not completely suppress this process, suggesting that additional DNA repair mechanisms are involved in the generation of stationary-phase-associated mutants in this bacterium. In agreement with this hypothesis, the results presented in this work revealed that starved B. subtilis cells lacking a functional error prevention GO (8-oxo-G) system (composed of YtkD, MutM, and YfhQ) had a dramatic propensity to increase the number of stationary-phase-induced revertants. These results strongly suggest that the occurrence of mutations is exacerbated by reactive oxygen species in nondividing cells of B. subtilis having an inactive GO system. Interestingly, overexpression of the MMR system significantly diminished the accumulation of mutations in cells deficient in the GO repair system during stationary phase. These results suggest that the MMR system plays a general role in correcting base mispairing induced by oxidative stress during stationary phase. Thus, the absence or depression of both the MMR and GO systems contributes to the production of stationary-phase mutants in B. subtilis. In conclusion, our results support the idea that oxidative stress is a mechanism that generates genetic diversity in starved cells of B. subtilis, promoting stationary-phase-induced mutagenesis in this soil microorganism.
Collapse
|
25
|
Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 2008; 105:12503-8. [PMID: 18719125 DOI: 10.1073/pnas.0801499105] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many bacterial species are capable of biofilm growth, in which cells live and replicate within multicellular community groups. Recent work shows that biofilm growth by a wide variety of bacterial species can generate genetic diversity in microbial populations. This finding is significant because the presence of diverse subpopulations can extend the range of conditions in which communities can thrive. Here, we used biofilms formed by the pathogen Pseudomonas aeruginosa to investigate how this population diversity is produced. We found that some cells within biofilms incur double-stranded DNA breaks caused by endogenous oxidative stress. Genetic variants then result when breaks are repaired by a mutagenic mechanism involving recombinatorial DNA repair genes. We hypothesized that the mutations produced could promote the adaptation of biofilm communities to changing conditions in addition to generating diversity. To test this idea, we exposed biofilms to an antibiotic and found that the oxidative stress-break repair mechanism increased the emergence of antibiotic-resistant bacteria. The diversity and adaptability produced by this mechanism could help biofilm communities survive in harsh environments.
Collapse
|
26
|
Cirz RT, Romesberg FE. Controlling mutation: intervening in evolution as a therapeutic strategy. Crit Rev Biochem Mol Biol 2008; 42:341-54. [PMID: 17917871 DOI: 10.1080/10409230701597741] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutation is the driving force behind many processes linked to human disease, including cancer, aging, and the evolution of drug resistance. Mutations have traditionally been considered the inevitable consequence of replicating large genomes with polymerases of finite fidelity. Observations over the past several decades, however, have led to a new perspective on the process of mutagenesis. It has become clear that, under some circumstances, mutagenesis is a regulated process that requires the induction of pro-mutagenic enzymes and that, at least in bacteria, this induction may facilitate evolution. Herein, we review what is known about induced mutagenesis in bacteria as well as evidence that it contributes to the evolution of antibiotic resistance. Finally, we discuss the possibility that components of induced mutation pathways might be targeted for inhibition as a novel therapeutic strategy to prevent the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Ryan T Cirz
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M. Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 2008; 42:327-39. [PMID: 17917870 DOI: 10.1080/10409230701597717] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One of the experimental platforms to study programs increasing genetic diversity in cells under stressful or nondividing conditions is adaptive mutagenesis, also called stationary phase mutagenesis or stress-induced mutagenesis. In some model systems, there is evidence that mutagenesis occurs in genes that are actively transcribed. Some of those genes may be actively transcribed as a result of environmental stress giving the appearance of directed mutation. That is, cells under conditions of starvation or other stresses accumulate mutations in transcribed genes, including those transcribed because of the selective pressure. An important question concerns how, within the context of stochastic processes, a cell biases mutation to genes under selection pressure? Because the mechanisms underlying DNA transactions in prokaryotic cells are well conserved among the three domains of life, these studies are likely to apply to the examination of genetic programs in eukaryotes. In eukaryotes, increasing genetic diversity in differentiated cells has been implicated in neoplasia and cell aging. Historically, Escherichia coli has been the paradigm used to discern the cellular processes driving the generation of adaptive mutations; however, examining adaptive mutation in Bacillus subtilis has contributed new insights. One noteworthy contribution is that the B. subtilis' ability to accumulate chromosomal mutations under conditions of starvation is influenced by cell differentiation and transcriptional derepression, as well as by proteins homologous to transcription and repair factors. Here we revise and discuss concepts pertaining to genetic programs that increase diversity in B. subtilis cells under nutritional stress.
Collapse
|
28
|
Abstract
In eukaryotic cells, repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway is critical for genomic stability. A functionally homologous repair apparatus, composed of Ku and a multifunctional DNA ligase (LigD), has recently been identified in many prokaryotes. Eukaryotic organisms employ a large number of factors to repair breaks by NHEJ. In contrast, the bacterial NHEJ complex is a two-component system that, despite its relative simplicity, possesses all of the break-recognition, end-processing, and ligation activities required to facilitate the complex task of DSB repair. Here, we review recent discoveries on the structure and function of the bacterial NHEJ repair apparatus. In particular, we discuss the evolutionary origins of this DSB repair pathway, how the diverse activities within the prokaryotic end-joining complex cooperate to facilitate DSB repair, the physiological roles of bacterial NHEJ, and finally, the essential function of NHEJ in the life cycle of mycobacteriophage.
Collapse
Affiliation(s)
- Robert S Pitcher
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | |
Collapse
|
29
|
Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 2007; 42:399-435. [PMID: 17917874 PMCID: PMC3319127 DOI: 10.1080/10409230701648502] [Citation(s) in RCA: 404] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
Collapse
Affiliation(s)
- Rodrigo S Galhardo
- Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
30
|
Zhang W, Culley DE, Gritsenko MA, Moore RJ, Nie L, Scholten JCM, Petritis K, Strittmatter EF, Camp DG, Smith RD, Brockman FJ. LC-MS/MS based proteomic analysis and functional inference of hypothetical proteins in Desulfovibrio vulgaris. Biochem Biophys Res Commun 2006; 349:1412-9. [PMID: 16982031 DOI: 10.1016/j.bbrc.2006.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 11/26/2022]
Abstract
High efficiency capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine the proteins extracted from Desulfovibrio vulgaris cells across six treatment conditions. While our previous study provided a proteomic overview of the cellular metabolism based on proteins with known functions [W. Zhang, M.A. Gritsenko, R.J. Moore, D.E. Culley, L. Nie, K. Petritis, E.F. Strittmatter, D.G. Camp II, R.D. Smith, F.J. Brockman, A proteomic view of the metabolism in Desulfovibrio vulgaris determined by liquid chromatography coupled with tandem mass spectrometry, Proteomics 6 (2006) 4286-4299], this study describes the global detection and functional inference for hypothetical D. vulgaris proteins. Using criteria that a given peptide of a protein is identified from at least two out of three independent LC-MS/MS measurements and that for any protein at least two different peptides are identified among the three measurements, 129 open reading frames (ORFs) originally annotated as hypothetical proteins were found to encode expressed proteins. Functional inference for the conserved hypothetical proteins was performed by a combination of several non-homology based methods: genomic context analysis, phylogenomic profiling, and analysis of a combination of experimental information, including peptide detection in cells grown under specific culture conditions and cellular location of the proteins. Using this approach we were able to assign possible functions to 20 conserved hypothetical proteins. This study demonstrated that a combination of proteomics and bioinformatics methodologies can provide verification of the expression of hypothetical proteins and improve genome annotation.
Collapse
Affiliation(s)
- Weiwen Zhang
- Microbiology Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ross C, Pybus C, Pedraza-Reyes M, Sung HM, Yasbin RE, Robleto E. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 2006; 188:7512-20. [PMID: 16950921 PMCID: PMC1636285 DOI: 10.1128/jb.00980-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previously, using a chromosomal reversion assay system, we established that an adaptive mutagenic process occurs in nongrowing Bacillus subtilis cells under stress, and we demonstrated that multiple mechanisms are involved in generating these mutations (41, 43). In an attempt to delineate how these mutations are generated, we began an investigation into whether or not transcription and transcription-associated proteins influence adaptive mutagenesis. In B. subtilis, the Mfd protein (transcription repair coupling factor) facilitates removal of RNA polymerase stalled at transcriptional blockages and recruitment of repair proteins to DNA lesions on the transcribed strand. Here we demonstrate that the loss of Mfd has a depressive effect on stationary-phase mutagenesis. An association between Mfd mutagenesis and aspects of transcription is discussed.
Collapse
Affiliation(s)
- Christian Ross
- Department of Biological Sciences, University of Nevada, Las Vegas, 89154-4004, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hersh MN, Morales LD, Ross KJ, Rosenberg SM. Single-strand-specific exonucleases prevent frameshift mutagenesis by suppressing SOS induction and the action of DinB/DNA polymerase IV in growing cells. J Bacteriol 2006; 188:2336-42. [PMID: 16547019 PMCID: PMC1428391 DOI: 10.1128/jb.188.7.2336-2342.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains carrying null alleles of genes encoding single-strand-specific exonucleases ExoI and ExoVII display elevated frameshift mutation rates but not base substitution mutation rates. We characterized increased spontaneous frameshift mutation in ExoI- ExoVII- cells and report that some of this effect requires RecA, an inducible SOS DNA damage response, and the low-fidelity, SOS-induced DNA polymerase DinB/PolIV, which makes frameshift mutations preferentially. We also find that SOS is induced in ExoI- ExoVII- cells. The data imply a role for the single-stranded exonucleases in guarding the genome against mutagenesis by removing excess single-stranded DNA that, if left, leads to SOS induction and PolIV-dependent mutagenesis. Previous results implicated PolIV in E. coli mutagenesis specifically during starvation or antibiotic stresses. Our data imply that PolIV can also promote mutation in growing cells under genome stress due to excess single-stranded DNA.
Collapse
Affiliation(s)
- Megan N Hersh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|